
mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 1 of 81

MQTT Version 3.1.1 Plus Errata 01

OASIS Standard Incorporating Approved Errata 01

10 December 2015

Specification URIs
This version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.doc
(Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.pdf

Previous version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf

Technical Committee:

OASIS Message Queuing Telemetry Transport (MQTT) TC

Chairs:
Raphael J Cohn (raphael.cohn@stormmq.com), Individual
Richard J Coppen (coppen@uk.ibm.com), IBM

Editors:
Andrew Banks (Andrew_Banks@uk.ibm.com), IBM
Rahul Gupta (rahul.gupta@us.ibm.com), IBM

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

 MQTT Version 3.1.1 Errata 01. Edited by Andrew Banks and Rahul Gupta. 10 December
2015. OASIS Approved Errata. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-
v3.1.1-errata01-os.html.

Related work:
This specification replaces or supersedes:

 MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS
Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

This specification is related to:

 MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and
Louis-Philippe Lamoureux. Latest version: http://docs.oasis-open.org/mqtt/mqtt-nist-
cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html.

Abstract:
MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open,
simple, and designed so as to be easy to implement. These characteristics make it ideal for use
in many situations, including constrained environments such as for communication in Machine to

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://www.oasis-open.org/committees/mqtt/
mailto:raphael.cohn@stormmq.com
mailto:coppen@uk.ibm.com
http://www.ibm.com/
mailto:Andrew_Banks@uk.ibm.com
http://www.ibm.com/
mailto:rahul.gupta@us.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 2 of 81

Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required
and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-
directional connections. Its features include:

 Use of the publish/subscribe message pattern which provides one-to-many message
distribution and decoupling of applications.

 A messaging transport that is agnostic to the content of the payload.

 Three qualities of service for message delivery:

 "At most once", where messages are delivered according to the best efforts of the
operating environment. Message loss can occur. This level could be used, for
example, with ambient sensor data where it does not matter if an individual reading is
lost as the next one will be published soon after.

 "At least once", where messages are assured to arrive but duplicates can occur.

 "Exactly once", where message are assured to arrive exactly once. This level could
be used, for example, with billing systems where duplicate or lost messages could
lead to incorrect charges being applied.

 A small transport overhead and protocol exchanges minimized to reduce network traffic.

 A mechanism to notify interested parties when an abnormal disconnection occurs.

Status:
This document was last revised or approved by the OASIS Message Queuing Telemetry
Transport (MQTT) TC on the above date. The level of approval is also listed above. Check the
“Latest version” location noted above for possible later revisions of this document. Any other
numbered Versions and other technical work produced by the Technical Committee (TC) are
listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/mqtt/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-
open.org/committees/mqtt/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:

[mqtt-v3.1.1-plus-errata01]

MQTT Version 3.1.1 Plus Errata 01. Edited by Andrew Banks and Rahul Gupta. 10 December
2015. OASIS Standard Incorporating Approved Errata 01. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/committees/mqtt/ipr.php
https://www.oasis-open.org/committees/mqtt/ipr.php
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 3 of 81

Notices

Copyright © OASIS Open 2015. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 4 of 81

Table of Contents

1 Introduction ... 9

1.1 Organization of MQTT .. 9

1.2 Terminology .. 9

1.3 Normative references ... 10

1.4 Non normative references .. 11

1.5 Data representations .. 13

1.5.1 Bits ... 13

1.5.2 Integer data values .. 13

1.5.3 UTF-8 encoded strings .. 13

1.6 Editing conventions ... 15

2 MQTT Control Packet format ... 16

2.1 Structure of an MQTT Control Packet .. 16

2.2 Fixed header ... 16

2.2.1 MQTT Control Packet type .. 16

2.2.2 Flags .. 17

2.2.3 Remaining Length ... 18

2.3 Variable header .. 20

2.3.1 Packet Identifier ... 20

2.4 Payload ... 21

3 MQTT Control Packets ... 23

3.1 CONNECT – Client requests a connection to a Server .. 23

3.1.1 Fixed header.. 23

3.1.2 Variable header ... 23

3.1.3 Payload .. 29

3.1.4 Response .. 30

3.2 CONNACK – Acknowledge connection request ... 31

3.2.1 Fixed header.. 31

3.2.2 Variable header ... 31

3.2.3 Payload .. 33

3.3 PUBLISH – Publish message ... 33

3.3.1 Fixed header.. 33

3.3.2 Variable header ... 35

3.3.3 Payload .. 36

3.3.4 Response .. 36

3.3.5 Actions ... 36

3.4 PUBACK – Publish acknowledgement ... 37

3.4.1 Fixed header.. 37

3.4.2 Variable header ... 37

3.4.3 Payload .. 37

3.4.4 Actions ... 37

3.5 PUBREC – Publish received (QoS 2 publish received, part 1) .. 38

3.5.1 Fixed header.. 38

3.5.2 Variable header ... 38

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 5 of 81

3.5.3 Payload .. 38

3.5.4 Actions ... 38

3.6 PUBREL – Publish release (QoS 2 publish received, part 2)... 38

3.6.1 Fixed header.. 38

3.6.2 Variable header ... 39

3.6.3 Payload .. 39

3.6.4 Actions ... 39

3.7 PUBCOMP – Publish complete (QoS 2 publish received, part 3) .. 39

3.7.1 Fixed header.. 39

3.7.2 Variable header ... 40

3.7.3 Payload .. 40

3.7.4 Actions ... 40

3.8 SUBSCRIBE - Subscribe to topics ... 40

3.8.1 Fixed header.. 40

3.8.2 Variable header ... 40

3.8.3 Payload .. 41

3.8.4 Response .. 42

3.9 SUBACK – Subscribe acknowledgement ... 43

3.9.1 Fixed header.. 44

3.9.2 Variable header ... 44

3.9.3 Payload .. 44

3.10 UNSUBSCRIBE – Unsubscribe from topics ... 45

3.10.1 Fixed header.. 45

3.10.2 Variable header ... 45

3.10.3 Payload .. 46

3.10.4 Response .. 46

3.11 UNSUBACK – Unsubscribe acknowledgement.. 47

3.11.1 Fixed header.. 47

3.11.2 Variable header ... 47

3.11.3 Payload .. 48

3.12 PINGREQ – PING request ... 48

3.12.1 Fixed header.. 48

3.12.2 Variable header ... 48

3.12.3 Payload .. 48

3.12.4 Response .. 48

3.13 PINGRESP – PING response .. 48

3.13.1 Fixed header.. 48

3.13.2 Variable header ... 49

3.13.3 Payload .. 49

3.14 DISCONNECT – Disconnect notification .. 49

3.14.1 Fixed header.. 49

3.14.2 Variable header ... 49

3.14.3 Payload .. 49

3.14.4 Response .. 49

4 Operational behavior .. 51

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 6 of 81

4.1 Storing state .. 51

4.1.1 Non normative example .. 51

4.2 Network Connections .. 52

4.3 Quality of Service levels and protocol flows ... 52

4.3.1 QoS 0: At most once delivery .. 52

4.3.2 QoS 1: At least once delivery .. 53

4.3.3 QoS 2: Exactly once delivery .. 54

4.4 Message delivery retry .. 55

4.5 Message receipt ... 56

4.6 Message ordering ... 56

4.7 Topic Names and Topic Filters ... 57

4.7.1 Topic wildcards .. 57

4.7.2 Topics beginning with $... 58

4.7.3 Topic semantic and usage .. 58

4.8 Handling errors ... 59

5 Security ... 60

5.1 Introduction ... 60

5.2 MQTT solutions: security and certification .. 60

5.3 Lightweight cryptography and constrained devices .. 61

5.4 Implementation notes ... 61

5.4.1 Authentication of Clients by the Server ... 61

5.4.2 Authorization of Clients by the Server ... 61

5.4.3 Authentication of the Server by the Client ... 61

5.4.4 Integrity of Application Messages and Control Packets .. 62

5.4.5 Privacy of Application Messages and Control Packets ... 62

5.4.6 Non-repudiation of message transmission .. 62

5.4.7 Detecting compromise of Clients and Servers .. 62

5.4.8 Detecting abnormal behaviors... 63

5.4.9 Other security considerations .. 63

5.4.10 Use of SOCKS .. 64

5.4.11 Security profiles ... 64

6 Using WebSocket as a network transport .. 65

6.1 IANA Considerations .. 65

7 Conformance .. 66

7.1 Conformance Targets ... 66

7.1.1 MQTT Server ... 66

7.1.2 MQTT Client .. 66

Appendix A. Acknowledgements (non normative) .. 68

Appendix B. Mandatory normative statements (non normative) ... 70

Appendix C. Revision history (non normative) ... 80

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 7 of 81

Table of Figures and Tables

Figure 1.1 Structure of UTF-8 encoded strings .. 13

Figure 1.2 UTF-8 encoded string non normative example………………………………………………………………..…14

Figure 2.1 – Structure of an MQTT Control Packet .. 16
Figure 2.2 - Fixed header format .. 16
Table 2.1 - Control packet types .. 16
Table 2.2 - Flag Bits ... 17
Table 2.4 Size of Remaining Length field ... 18
Figure 2.3 - Packet Identifier bytes... 20
Table 2.5 - Control Packets that contain a Packet Identifier ... 20
Table 2.6 - Control Packets that contain a Payload ... 21
Figure 3.1 – CONNECT Packet fixed header ... 23
Figure 3.2 - Protocol Name bytes ... 23
Figure 3.3 - Protocol Level byte ... 24
Figure 3.4 - Connect Flag bits .. 24
Figure 3.5 Keep Alive bytes ... 27
Figure 3.6 - Variable header non normative example .. 28
Figure 3.7 - Password bytes .. 30
Figure 3.8 – CONNACK Packet fixed header .. 31
Figure 3.9 – CONNACK Packet variable header.. 31
Table 3.1 – Connect Return code values ... 32
Figure 3.10 – PUBLISH Packet fixed header ... 33
Table 3.2 - QoS definitions ... 34
Table 3.3 - Publish Packet non normative example ... 35
Figure 3.11 - Publish Packet variable header non normative example .. 36
Table 3.4 - Expected Publish Packet response .. 36
Figure 3.12 - PUBACK Packet fixed header .. 37
Figure 3.13 – PUBACK Packet variable header ... 37
Figure 3.14 – PUBREC Packet fixed header ... 38
Figure 3.15 – PUBREC Packet variable header .. 38
Figure 3.16 – PUBREL Packet fixed header .. 38
Figure 3.17 – PUBREL Packet variable header ... 39
Figure 3.18 – PUBCOMP Packet fixed header .. 39
Figure 3.19 – PUBCOMP Packet variable header ... 40
Figure 3.20 – SUBSCRIBE Packet fixed header .. 40
Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example ... 41
Figure 3.22 – SUBSCRIBE Packet payload format .. 41
Table 3.5 - Payload non normative example .. 42
Figure 3.23 - Payload byte format non normative example .. 42
Figure 3.24 – SUBACK Packet fixed header .. 44
Figure 3.25 – SUBACK Packet variable header ... 44
Figure 3.26 – SUBACK Packet payload format .. 44
Table 3.6 - Payload non normative example .. 45
Figure 3.27 - Payload byte format non normative example .. 45
Figure 3.28 – UNSUBSCRIBE Packet Fixed header ... 45
Figure 3.29 – UNSUBSCRIBE Packet variable header .. 45
Table3.7 - Payload non normative example ... 46
Figure 3.30 - Payload byte format non normative example .. 46

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 8 of 81

Figure 3.31 – UNSUBACK Packet fixed header... 47
Figure 3.32 – UNSUBACK Packet variable header .. 47
Figure 3.33 – PINGREQ Packet fixed header .. 48
Figure 3.34 – PINGRESP Packet fixed header .. 48
Figure 3.35 – DISCONNECT Packet fixed header ... 49
Figure 4.1 – QoS 0 protocol flow diagram, non normative example ... 52
Figure 4.2 – QoS 1 protocol flow diagram, non normative example ... 53
Figure 4.3 – QoS 2 protocol flow diagram, non normative example ... 54
Figure 6.1 - IANA WebSocket Identifier ... 65

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 9 of 81

1 Introduction 1

1.1 Organization of MQTT 2

This specification is split into seven chapters: 3

 Chapter 1 - Introduction 4

 Chapter 2 - MQTT Control Packet format 5

 Chapter 3 - MQTT Control Packets 6

 Chapter 4 - Operational behavior 7

 Chapter 5 - Security 8

 Chapter 6 - Using WebSocket as a network transport 9

 Chapter 7 - Conformance Targets 10

1.2 Terminology 11

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 12
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 13
described in IETF RFC 2119 [RFC2119]. 14

Network Connection: 15

A construct provided by the underlying transport protocol that is being used by MQTT. 16

 It connects the Client to the Server. 17

 It provides the means to send an ordered, lossless, stream of bytes in both directions. 18

For examples see Section 4.2. 19

Application Message: 20

The data carried by the MQTT protocol across the network for the application. When Application 21

Messages are transported by MQTT they have an associated Quality of Service and a Topic Name. 22

Client: 23

A program or device that uses MQTT. A Client always establishes the Network Connection to the Server. 24
It can 25

 Publish Application Messages that other Clients might be interested in. 26

 Subscribe to request Application Messages that it is interested in receiving. 27

 Unsubscribe to remove a request for Application Messages. 28

 Disconnect from the Server. 29

Server: 30

A program or device that acts as an intermediary between Clients which publish Application Messages 31
and Clients which have made Subscriptions. A Server 32

 Accepts Network Connections from Clients. 33

 Accepts Application Messages published by Clients. 34

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 10 of 81

 Processes Subscribe and Unsubscribe requests from Clients. 35

 Forwards Application Messages that match Client Subscriptions. 36

Subscription: 37

A Subscription comprises a Topic Filter and a maximum QoS. A Subscription is associated with a single 38
Session. A Session can contain more than one Subscription. Each Subscription within a session has a 39
different Topic Filter. 40

Topic Name: 41

The label attached to an Application Message which is matched against the Subscriptions known to the 42
Server. The Server sends a copy of the Application Message to each Client that has a matching 43
Subscription. 44

Topic Filter: 45

An expression contained in a Subscription, to indicate an interest in one or more topics. A Topic Filter can 46
include wildcard characters. 47

Session: 48

A stateful interaction between a Client and a Server. Some Sessions last only as long as the Network 49
Connection, others can span multiple consecutive Network Connections between a Client and a Server. 50

MQTT Control Packet: 51

A packet of information that is sent across the Network Connection. The MQTT specification defines 52
fourteen different types of Control Packet, one of which (the PUBLISH packet) is used to convey 53
Application Messages. 54

1.3 Normative references 55

[RFC2119] 56

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 57
1997. 58

http://www.ietf.org/rfc/rfc2119.txt 59

 60

[RFC3629] 61

Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003 62
http://www.ietf.org/rfc/rfc3629.txt 63

 64

[RFC5246] 65

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 66
2008. 67

http://www.ietf.org/rfc/rfc5246.txt 68

 69

[RFC6455] 70

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, December 2011. 71

http://www.ietf.org/rfc/rfc6455.txt 72

 73

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6455.txt

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 11 of 81

[Unicode] 74

The Unicode Consortium. The Unicode Standard. 75

http://www.unicode.org/versions/latest/ 76

1.4 Non normative references 77

[RFC793] 78

Postel, J. Transmission Control Protocol. STD 7, IETF RFC 793, September 1981. 79
http://www.ietf.org/rfc/rfc793.txt 80

 81

[AES] 82

Advanced Encryption Standard (AES) (FIPS PUB 197). 83
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 84

 85

[DES] 86

Data Encryption Standard (DES). 87
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf 88
 89

[FIPS1402] 90

Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 91

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf 92
 93

[IEEE 802.1AR] 94

IEEE Standard for Local and metropolitan area networks - Secure Device Identity 95
http://standards.ieee.org/findstds/standard/802.1AR-2009.html 96
 97

[ISO29192] 98

ISO/IEC 29192-1:2012 Information technology -- Security techniques -- Lightweight cryptography -- Part 99
1: General 100
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56425 101
 102

[MQTT NIST] 103

MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 104
Cybersecurity 105
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html 106
 107

[MQTTV31] 108

MQTT V3.1 Protocol Specification. 109

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html 110

 111

[NISTCSF] 112

Improving Critical Infrastructure Cybersecurity Executive Order 13636 113
http://www.nist.gov/itl/upload/preliminary-cybersecurity-framework.pdf 114

http://www.unicode.org/versions/latest/
http://www.ietf.org/rfc/rfc793.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56425
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://www.nist.gov/itl/upload/preliminary-cybersecurity-framework.pdf

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 12 of 81

 115

[NIST7628] 116

NISTIR 7628 Guidelines for Smart Grid Cyber Security 117
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf 118

 119

[NSAB] 120

NSA Suite B Cryptography 121
http://www.nsa.gov/ia/programs/suiteb_cryptography/ 122

 123

[PCIDSS] 124

PCI-DSS Payment Card Industry Data Security Standard 125
https://www.pcisecuritystandards.org/security_standards/ 126

 127

[RFC1928] 128

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L. Jones, "SOCKS Protocol Version 5", RFC 129
1928, March 1996. 130

http://www.ietf.org/rfc/rfc1928.txt 131

 132

[RFC4511] 133

Sermersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, June 134
2006. 135

http://www.ietf.org/rfc/rfc4511.txt 136

 137

[RFC5077] 138

Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session 139
Resumption without Server-Side State", RFC 5077, January 2008. 140

http://www.ietf.org/rfc/rfc5077.txt 141

 142

[RFC5280] 143

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key 144
Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008. 145

http://www.ietf.org/rfc/rfc5280.txt 146

 147

[RFC6066] 148

Eastlake 3rd, D., "Transport Layer Security (TLS) Extensions: Extension Definitions", RFC 6066, January 149
2011. 150

http://www.ietf.org/rfc/rfc6066.txt 151

 152

[RFC6749] 153

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012. 154

http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.pcisecuritystandards.org/security_standards/
http://www.ietf.org/rfc/rfc1928.txt
http://www.ietf.org/rfc/rfc4511.txt
http://www.ietf.org/rfc/rfc5077.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc6066.txt

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 13 of 81

http://www.ietf.org/rfc/rfc6749.txt 155

 156

[RFC6960] 157

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public 158
Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, June 2013. 159
http://www.ietf.org/rfc/rfc6960.txt 160
 161

[SARBANES] 162

Sarbanes-Oxley Act of 2002. 163
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm 164

 165

[USEUSAFEHARB] 166

U.S.-EU Safe Harbor 167
http://export.gov/safeharbor/eu/eg_main_018365.asp 168

1.5 Data representations 169

1.5.1 Bits 170

Bits in a byte are labeled 7 through 0. Bit number 7 is the most significant bit, the least significant bit is 171
assigned bit number 0. 172

1.5.2 Integer data values 173

Integer data values are 16 bits in big-endian order: the high order byte precedes the lower order byte. 174
This means that a 16-bit word is presented on the network as Most Significant Byte (MSB), followed by 175
Least Significant Byte (LSB). 176

1.5.3 UTF-8 encoded strings 177

Text fields in the Control Packets described later are encoded as UTF-8 strings. UTF-8 [RFC3629] is an 178

efficient encoding of Unicode [Unicode] characters that optimizes the encoding of ASCII characters in 179

support of text-based communications. 180

 181

Each of these strings is prefixed with a two byte length field that gives the number of bytes in a UTF-8 182
encoded string itself, as illustrated in Figure 1.1 Structure of UTF-8 encoded strings below. Consequently 183
there is a limit on the size of a string that can be passed in one of these UTF-8 encoded string 184
components; you cannot use a string that would encode to more than 65535 bytes. 185

 186

Unless stated otherwise all UTF-8 encoded strings can have any length in the range 0 to 65535 bytes. 187

Figure 1.1 Structure of UTF-8 encoded strings 188

Bit 7 6 5 4 3 2 1 0

byte 1 String length MSB

byte 2 String length LSB

byte 3 …. UTF-8 Encoded Character Data, if length > 0.

http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6960.txt
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
http://export.gov/safeharbor/eu/eg_main_018365.asp

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 14 of 81

 189

The character data in a UTF-8 encoded string MUST be well-formed UTF-8 as defined by the Unicode 190
specification [Unicode] and restated in RFC 3629 [RFC3629]. In particular this data MUST NOT include 191
encodings of code points between U+D800 and U+DFFF. If a Server or Client receives a Control Packet 192
containing ill-formed UTF-8 it MUST close the Network Connection [MQTT-1.5.3-1]. 193
 194
A UTF-8 encoded string MUST NOT include an encoding of the null character U+0000. If a receiver 195
(Server or Client) receives a Control Packet containing U+0000 it MUST close the Network 196
Connection [MQTT-1.5.3-2]. 197

 198

The data SHOULD NOT include encodings of the Unicode [Unicode] code points listed below. If a 199

receiver (Server or Client) receives a Control Packet containing any of them it MAY close the Network 200
Connection: 201
 202
U+0001..U+001F control characters 203
U+007F..U+009F control characters 204

Code points defined in the Unicode specification [Unicode] to be non-characters (for example U+0FFFF) 205

 206
A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always to be interpreted to mean U+FEFF ("ZERO 207
WIDTH NO-BREAK SPACE") wherever it appears in a string and MUST NOT be skipped over or stripped 208
off by a packet receiver [MQTT-1.5.3-3]. 209

 210

1.5.3.1 Non normative example 211

For example, the string A𪛔 which is LATIN CAPITAL Letter A followed by the code point 212

U+2A6D4 (which represents a CJK IDEOGRAPH EXTENSION B character) is encoded as 213
follows: 214

 215

Figure 1.2 UTF-8 encoded string non normative example 216

Bit 7 6 5 4 3 2 1 0

byte 1 String Length MSB (0x00)

 0 0 0 0 0 0 0 0

byte 2 String Length LSB (0x05)

 0 0 0 0 0 1 0 1

byte 3 ‘A’ (0x41)

 0 1 0 0 0 0 0 1

byte 4 (0xF0)

 1 1 1 1 0 0 0 0

byte 5 (0xAA)

 1 0 1 0 1 0 1 0

byte 6 (0x9B)

 1 0 0 1 1 0 1 1

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 15 of 81

byte 7 (0x94)

 1 0 0 1 0 1 0 0

 217

1.6 Editing conventions 218

Text highlighted in Yellow within this specification identifies conformance statements. Each conformance 219
statement has been assigned a reference in the format [MQTT-x.x.x-y]. 220

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 16 of 81

2 MQTT Control Packet format 221

2.1 Structure of an MQTT Control Packet 222

The MQTT protocol works by exchanging a series of MQTT Control Packets in a defined way. This 223
section describes the format of these packets. 224

An MQTT Control Packet consists of up to three parts, always in the following order as illustrated in 225
Figure 2.1 - Structure of an MQTT Control Packet. 226

 227

Figure 2.1 – Structure of an MQTT Control Packet 228

Fixed header, present in all MQTT Control Packets

Variable header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

2.2 Fixed header 229

Each MQTT Control Packet contains a fixed header. Figure 2.2 - Fixed header format illustrates the fixed 230
header format. 231

 232

Figure 2.2 - Fixed header format 233

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type Flags specific to each MQTT Control
Packet type

byte 2… Remaining Length

 234

2.2.1 MQTT Control Packet type 235

Position: byte 1, bits 7-4. 236

Represented as a 4-bit unsigned value, the values are listed in Table 2.1 - Control packet types. 237

 238

Table 2.1 - Control packet types 239

Name Value Direction of
flow

Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server Client request to connect to Server

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Client to Server

 or

Publish message

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 17 of 81

Server to Client

PUBACK 4 Client to Server

 or

Server to Client

Publish acknowledgment

PUBREC 5 Client to Server

 or

Server to Client

Publish received (assured delivery part 1)

PUBREL 6 Client to Server

 or

Server to Client

Publish release (assured delivery part 2)

PUBCOMP 7 Client to Server

 or

Server to Client

Publish complete (assured delivery part 3)

SUBSCRIBE 8 Client to Server Client subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

UNSUBSCRIBE 10 Client to Server Unsubscribe request

UNSUBACK 11 Server to Client Unsubscribe acknowledgment

PINGREQ 12 Client to Server PING request

PINGRESP 13 Server to Client PING response

DISCONNECT 14 Client to Server Client is disconnecting

Reserved 15 Forbidden Reserved

 240

2.2.2 Flags 241

The remaining bits [3-0] of byte 1 in the fixed header contain flags specific to each MQTT Control Packet 242
type as listed in the Table 2.2 - Flag Bits below. Where a flag bit is marked as “Reserved” in Table 2.2 - 243
Flag Bits, it is reserved for future use and MUST be set to the value listed in that table [MQTT-2.2.2-1]. If 244
invalid flags are received, the receiver MUST close the Network Connection [MQTT-2.2.2-2]. See Section 245
4.8 for details about handling errors. 246

 247

 Table 2.2 - Flag Bits 248

Control Packet Fixed header flags Bit 3 Bit 2 Bit 1 Bit 0

CONNECT Reserved 0 0 0 0

CONNACK Reserved 0 0 0 0

PUBLISH Used in MQTT 3.1.1 DUP
1
 QoS

2
 QoS

2
 RETAIN

3

PUBACK Reserved 0 0 0 0

PUBREC Reserved 0 0 0 0

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 18 of 81

PUBREL Reserved 0 0 1 0

PUBCOMP Reserved 0 0 0 0

SUBSCRIBE Reserved 0 0 1 0

SUBACK Reserved 0 0 0 0

UNSUBSCRIBE Reserved 0 0 1 0

UNSUBACK Reserved 0 0 0 0

PINGREQ Reserved 0 0 0 0

PINGRESP Reserved 0 0 0 0

DISCONNECT Reserved 0 0 0 0

 249

DUP
1
 = Duplicate delivery of a PUBLISH Control Packet 250

QoS
2
 = PUBLISH Quality of Service 251

RETAIN
3
 = PUBLISH Retain flag 252

See Section 3.3.1 for a description of the DUP, QoS, and RETAIN flags in the PUBLISH Control Packet. 253

2.2.3 Remaining Length 254

Position: starts at byte 2. 255

 256

The Remaining Length is the number of bytes remaining within the current packet, including data in the 257
variable header and the payload. The Remaining Length does not include the bytes used to encode the 258
Remaining Length. 259

 260

The Remaining Length is encoded using a variable length encoding scheme which uses a single byte for 261
values up to 127. Larger values are handled as follows. The least significant seven bits of each byte 262
encode the data, and the most significant bit is used to indicate that there are following bytes in the 263
representation. Thus each byte encodes 128 values and a "continuation bit". The maximum number of 264
bytes in the Remaining Length field is four. 265

 266

Non normative comment 267

For example, the number 64 decimal is encoded as a single byte, decimal value 64, hexadecimal 268
0x40. The number 321 decimal (= 65 + 2*128) is encoded as two bytes, least significant first. The 269
first byte is 65+128 = 193. Note that the top bit is set to indicate at least one following byte. The 270
second byte is 2. 271

 272

Non normative comment 273

This allows applications to send Control Packets of size up to 268,435,455 (256 MB). The 274
representation of this number on the wire is: 0xFF, 0xFF, 0xFF, 0x7F. 275

Table 2.4 shows the Remaining Length values represented by increasing numbers of bytes. 276

 277

Table 2.4 Size of Remaining Length field 278

Digits From To

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 19 of 81

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

4 2 097 152 (0x80, 0x80, 0x80, 0x01) 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

 279

Non normative comment 280

The algorithm for encoding a non negative integer (X) into the variable length encoding scheme is 281
as follows: 282

 do 283

 encodedByte = X MOD 128 284

 X = X DIV 128 285

 // if there are more data to encode, set the top bit of this byte 286

 if (X > 0) 287

 encodedByte = encodedByte OR 128 288

 endif 289

 'output' encodedByte 290

 while (X > 0) 291

 292

Where MOD is the modulo operator (% in C), DIV is integer division (/ in C), and OR is bit-wise or 293

(| in C). 294

 295

Non normative comment 296

The algorithm for decoding the Remaining Length field is as follows: 297

 298

multiplier = 1 299

value = 0 300

do 301

 encodedByte = 'next byte from stream' 302

 value += (encodedByte AND 127) * multiplier 303

 if (multiplier > 128*128*128) 304

 throw Error(Malformed Remaining Length) 305

 multiplier *= 128 306

while ((encodedByte AND 128) != 0) 307

 multiplier = 1 308

 value = 0 309

 do 310

 encodedByte = 'next byte from stream' 311

 value += (encodedByte AND 127) * multiplier 312

 multiplier *= 128 313

 if (multiplier > 128*128*128) 314

 throw Error(Malformed Remaining Length) 315

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 20 of 81

 while ((encodedByte AND 128) != 0) 316

 317

where AND is the bit-wise and operator (& in C). 318

 319

When this algorithm terminates, value contains the Remaining Length value. 320

2.3 Variable header 321

Some types of MQTT Control Packets contain a variable header component. It resides between the fixed 322
header and the payload. The content of the variable header varies depending on the Packet type. The 323
Packet Identifier field of variable header is common in several packet types. 324

2.3.1 Packet Identifier 325

Figure 2.3 - Packet Identifier bytes 326

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 327

The variable header component of many of the Control Packet types includes a 2 byte Packet Identifier 328
field. These Control Packets are PUBLISH (where QoS > 0), PUBACK, PUBREC, PUBREL, PUBCOMP, 329
SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK. 330

 331

SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0) Control Packets MUST contain a 332
non-zero 16-bit Packet Identifier [MQTT-2.3.1-1]. Each time a Client sends a new packet of one of these 333
types it MUST assign it a currently unused Packet Identifier [MQTT-2.3.1-2]. If a Client re-sends a 334
particular Control Packet, then it MUST use the same Packet Identifier in subsequent re-sends of that 335
packet. The Packet Identifier becomes available for reuse after the Client has processed the 336
corresponding acknowledgement packet. In the case of a QoS 1 PUBLISH this is the corresponding 337
PUBACK; in the case of QoS 2 it is PUBCOMP. For SUBSCRIBE or UNSUBSCRIBE it is the 338
corresponding SUBACK or UNSUBACK [MQTT-2.3.1-3]. The same conditions apply to a Server when it 339
sends a PUBLISH with QoS > 0 [MQTT-2.3.1-4]. 340

 341

A PUBLISH Packet MUST NOT contain a Packet Identifier if its QoS value is set to 0 [MQTT-2.3.1-5]. 342

 343

A PUBACK, PUBREC or PUBREL Packet MUST contain the same Packet Identifier as the PUBLISH 344
Packet that was originally sent [MQTT-2.3.1-6]. Similarly SUBACK and UNSUBACK MUST contain the 345
Packet Identifier that was used in the corresponding SUBSCRIBE and UNSUBSCRIBE Packet 346
respectively [MQTT-2.3.1-7]. 347

 348

Control Packets that require a Packet Identifier are listed in Table 2.5 - Control Packets that contain a 349
Packet Identifier. 350

Table 2.5 - Control Packets that contain a Packet Identifier 351

Control Packet Packet Identifier field

CONNECT NO

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 21 of 81

CONNACK NO

PUBLISH YES (If QoS > 0)

PUBACK YES

PUBREC YES

PUBREL YES

PUBCOMP YES

SUBSCRIBE YES

SUBACK YES

UNSUBSCRIBE YES

UNSUBACK YES

PINGREQ NO

PINGRESP NO

DISCONNECT NO

 352

The Client and Server assign Packet Identifiers independently of each other. As a result, Client Server 353
pairs can participate in concurrent message exchanges using the same Packet Identifiers. 354

 355

Non normative comment 356

It is possible for a Client to send a PUBLISH Packet with Packet Identifier 0x1234 and then 357
receive a different PUBLISH with Packet Identifier 0x1234 from its Server before it receives a 358
PUBACK for the PUBLISH that it sent. 359

 360

 Client Server 361
 PUBLISH Packet Identifier=0x1234--- 362
 --PUBLISH Packet Identifier=0x1234 363
 PUBACK Packet Identifier=0x1234--- 364
 --PUBACK Packet Identifier=0x1234 365

2.4 Payload 366

Some MQTT Control Packets contain a payload as the final part of the packet, as described in Chapter 3. 367
In the case of the PUBLISH packet this is the Application Message. Table 2.6 - Control Packets that 368
contain a Payload lists the Control Packets that require a Payload. 369

Table 2.6 - Control Packets that contain a Payload 370

Control Packet Payload

CONNECT Required

CONNACK None

PUBLISH Optional

PUBACK None

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 22 of 81

PUBREC None

PUBREL None

PUBCOMP None

SUBSCRIBE Required

SUBACK Required

UNSUBSCRIBE Required

UNSUBACK None

PINGREQ None

PINGRESP None

DISCONNECT None

 371

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 23 of 81

3 MQTT Control Packets 372

3.1 CONNECT – Client requests a connection to a Server 373

After a Network Connection is established by a Client to a Server, the first Packet sent from the Client to 374
the Server MUST be a CONNECT Packet [MQTT-3.1.0-1]. 375

 376

A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST 377
process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client 378
[MQTT-3.1.0-2]. See section 4.8 for information about handling errors. 379

 380

The payload contains one or more encoded fields. They specify a unique Client identifier for the Client, a 381
Will topic, Will Message, User Name and Password. All but the Client identifier are optional and their 382
presence is determined based on flags in the variable header. 383

3.1.1 Fixed header 384

Figure 3.1 – CONNECT Packet fixed header 385

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (1) Reserved

 0 0 0 1 0 0 0 0

byte 2… Remaining Length

 386

Remaining Length field 387

Remaining Length is the length of the variable header (10 bytes) plus the length of the Payload. It is 388
encoded in the manner described in section 2.2.3. 389

3.1.2 Variable header 390

The variable header for the CONNECT Packet consists of four fields in the following order: Protocol 391
Name, Protocol Level, Connect Flags, and Keep Alive. 392

3.1.2.1 Protocol Name 393

Figure 3.2 - Protocol Name bytes 394

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 24 of 81

byte 6 ‘T’ 0 1 0 1 0 1 0 0

 395

The Protocol Name is a UTF-8 encoded string that represents the protocol name “MQTT”, capitalized as 396
shown. The string, its offset and length will not be changed by future versions of the MQTT specification. 397

 398

If the protocol name is incorrect the Server MAY disconnect the Client, or it MAY continue processing the 399
CONNECT packet in accordance with some other specification. In the latter case, the Server MUST NOT 400
continue to process the CONNECT packet in line with this specification [MQTT-3.1.2-1]. 401

 402

Non normative comment 403

Packet inspectors, such as firewalls, could use the Protocol Name to identify MQTT traffic. 404

3.1.2.2 Protocol Level 405

Figure 3.3 - Protocol Level byte 406

 Description 7 6 5 4 3 2 1 0

Protocol Level

byte 7 Level(4) 0 0 0 0 0 1 0 0

 407

The 8 bit unsigned value that represents the revision level of the protocol used by the Client. The value of 408
the Protocol Level field for the version 3.1.1 of the protocol is 4 (0x04). The Server MUST respond to the 409
CONNECT Packet with a CONNACK return code 0x01 (unacceptable protocol level) and then disconnect 410
the Client if the Protocol Level is not supported by the Server [MQTT-3.1.2-2]. 411

3.1.2.3 Connect Flags 412

The Connect Flags byte contains a number of parameters specifying the behavior of the MQTT 413
connection. It also indicates the presence or absence of fields in the payload. 414

Figure 3.4 - Connect Flag bits 415

Bit 7 6 5 4 3 2 1 0

 User Name
Flag

Password
Flag

Will Retain Will QoS Will Flag Clean
Session

Reserved

byte 8 X X X X X X X 0

The Server MUST validate that the reserved flag in the CONNECT Control Packet is set to zero and 416
disconnect the Client if it is not zero [MQTT-3.1.2-3]. 417

3.1.2.4 Clean Session 418

Position: bit 1 of the Connect Flags byte. 419

 420
This bit specifies the handling of the Session state. 421
 422
The Client and Server can store Session state to enable reliable messaging to continue across a 423
sequence of Network Connections. This bit is used to control the lifetime of the Session state. 424

 425

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 25 of 81

If CleanSession is set to 0, the Server MUST resume communications with the Client based on state from 426
the current Session (as identified by the Client identifier). If there is no Session associated with the Client 427
identifier the Server MUST create a new Session. The Client and Server MUST store the Session after 428
the Client and Server are disconnected [MQTT-3.1.2-4]. After the disconnection of a Session that had 429
CleanSession set to 0, the Server MUST store further QoS 1 and QoS 2 messages that match any 430
subscriptions that the client had at the time of disconnection as part of the Session state [MQTT-3.1.2-5]. 431
It MAY also store QoS 0 messages that meet the same criteria. 432

 433

If CleanSession is set to 1, the Client and Server MUST discard any previous Session and start a new 434
one. This Session lasts as long as the Network Connection. State data associated with this Session 435
MUST NOT be reused in any subsequent Session [MQTT-3.1.2-6]. 436

 437

The Session state in the Client consists of: 438

 QoS 1 and QoS 2 messages which have been sent to the Server, but have not been completely 439
acknowledged. 440

 QoS 2 messages which have been received from the Server, but have not been completely 441
acknowledged. 442

 443

The Session state in the Server consists of: 444

 The existence of a Session, even if the rest of the Session state is empty. 445

 The Client’s subscriptions. 446

 QoS 1 and QoS 2 messages which have been sent to the Client, but have not been completely 447
acknowledged. 448

 QoS 1 and QoS 2 messages pending transmission to the Client. 449

 QoS 2 messages which have been received from the Client, but have not been completely 450
acknowledged. 451

 Optionally, QoS 0 messages pending transmission to the Client. 452

 453

Retained messages do not form part of the Session state in the Server, they MUST NOT be deleted when 454
the Session ends [MQTT-3.1.2.7]. 455

 456

See Section 4.1 for details and limitations of stored state. 457

 458

When CleanSession is set to 1 the Client and Server need not process the deletion of state atomically. 459

 460

Non normative comment 461

To ensure consistent state in the event of a failure, the Client should repeat its attempts to 462
connect with CleanSession set to 1, until it connects successfully. 463

 464

Non normative comment 465

Typically, a Client will always connect using CleanSession set to 0 or CleanSession set to 1 and 466
not swap between the two values. The choice will depend on the application. A Client using 467
CleanSession set to 1 will not receive old Application Messages and has to subscribe afresh to 468
any topics that it is interested in each time it connects. A Client using CleanSession set to 0 will 469
receive all QoS 1 or QoS 2 messages that were published while it was disconnected. Hence, to 470
ensure that you do not lose messages while disconnected, use QoS 1 or QoS 2 with 471
CleanSession set to 0. 472

https://tools.oasis-open.org/issues/browse/MQTT-3

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 26 of 81

 473

Non normative comment 474

When a Client connects with CleanSession set to 0, it is requesting that the Server maintain its 475
MQTT session state after it disconnects. Clients should only connect with CleanSession set to 0, 476
if they intend to reconnect to the Server at some later point in time. When a Client has determined 477
that it has no further use for the session it should do a final connect with CleanSession set to 1 478
and then disconnect. 479

3.1.2.5 Will Flag 480

Position: bit 2 of the Connect Flags. 481

 482
If the Will Flag is set to 1 this indicates that, if the Connect request is accepted, a Will Message MUST be 483
stored on the Server and associated with the Network Connection. The Will Message MUST be published 484
when the Network Connection is subsequently closed unless the Will Message has been deleted by the 485
Server on receipt of a DISCONNECT Packet [MQTT-3.1.2-8]. 486

Situations in which the Will Message is published include, but are not limited to: 487

 An I/O error or network failure detected by the Server. 488

 The Client fails to communicate within the Keep Alive time. 489

 The Client closes the Network Connection without first sending a DISCONNECT Packet. 490

 The Server closes the Network Connection because of a protocol error. 491

 492

If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be used by the 493
Server, and the Will Topic and Will Message fields MUST be present in the payload [MQTT-3.1.2-9]. 494

The Will Message MUST be removed from the stored Session state in the Server once it has been 495
published or the Server has received a DISCONNECT packet from the Client [MQTT-3.1.2-10]. 496

If the Will Flag is set to 0 the Will QoS and Will Retain fields in the Connect Flags MUST be set to zero 497
and the Will Topic and Will Message fields MUST NOT be present in the payload [MQTT-3.1.2-11]. 498

If the Will Flag is set to 0, a Will Message MUST NOT be published when this Network Connection ends 499
[MQTT-3.1.2-12]. 500

 501

The Server SHOULD publish Will Messages promptly. In the case of a Server shutdown or failure the 502
server MAY defer publication of Will Messages until a subsequent restart. If this happens there might be a 503
delay between the time the server experienced failure and a Will Message being published. 504

3.1.2.6 Will QoS 505

Position: bits 4 and 3 of the Connect Flags. 506

 507
These two bits specify the QoS level to be used when publishing the Will Message. 508

 509

If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00) [MQTT-3.1.2-13]. 510

If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02). It MUST NOT be 3 511
(0x03) [MQTT-3.1.2-14]. 512

3.1.2.7 Will Retain 513

Position: bit 5 of the Connect Flags. 514

 515
This bit specifies if the Will Message is to be Retained when it is published. 516

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 27 of 81

 517

If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0 [MQTT-3.1.2-15]. 518

If the Will Flag is set to 1: 519

 If Will Retain is set to 0, the Server MUST publish the Will Message as a non-retained message 520
[MQTT-3.1.2-16]. 521

 If Will Retain is set to 1, the Server MUST publish the Will Message as a retained message 522
[MQTT-3.1.2-17]. 523

3.1.2.8 User Name Flag 524

Position: bit 7 of the Connect Flags. 525

 526
If the User Name Flag is set to 0, a user name MUST NOT be present in the payload [MQTT-3.1.2-18]. 527

If the User Name Flag is set to 1, a user name MUST be present in the payload [MQTT-3.1.2-19]. 528

3.1.2.9 Password Flag 529

Position: bit 6 of the Connect Flags byte. 530

 531
If the Password Flag is set to 0, a password MUST NOT be present in the payload [MQTT-3.1.2-20]. 532

If the Password Flag is set to 1, a password MUST be present in the payload [MQTT-3.1.2-21]. 533

If the User Name Flag is set to 0, the Password Flag MUST be set to 0 [MQTT-3.1.2-22]. 534

3.1.2.10 Keep Alive 535

Figure 3.5 Keep Alive bytes 536

Bit 7 6 5 4 3 2 1 0

byte 9 Keep Alive MSB

byte 10 Keep Alive LSB

 537

The Keep Alive is a time interval measured in seconds. Expressed as a 16-bit word, it is the maximum 538
time interval that is permitted to elapse between the point at which the Client finishes transmitting one 539
Control Packet and the point it starts sending the next. It is the responsibility of the Client to ensure that 540
the interval between Control Packets being sent does not exceed the Keep Alive value. In the absence of 541
sending any other Control Packets, the Client MUST send a PINGREQ Packet [MQTT-3.1.2-23]. 542

 543

The Client can send PINGREQ at any time, irrespective of the Keep Alive value, and use the PINGRESP 544
to determine that the network and the Server are working. 545

 546

If the Keep Alive value is non-zero and the Server does not receive a Control Packet from the Client 547
within one and a half times the Keep Alive time period, it MUST disconnect the Network Connection to the 548
Client as if the network had failed [MQTT-3.1.2-24]. 549

 550

If a Client does not receive a PINGRESP Packet within a reasonable amount of time after it has sent a 551
PINGREQ, it SHOULD close the Network Connection to the Server. 552

 553

A Keep Alive value of zero (0) has the effect of turning off the keep alive mechanism. This means that, in 554
this case, the Server is not required to disconnect the Client on the grounds of inactivity. 555

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 28 of 81

Note that a Server is permitted to disconnect a Client that it determines to be inactive or non-responsive 556
at any time, regardless of the Keep Alive value provided by that Client. 557

 558

Non normative comment 559

The actual value of the Keep Alive is application specific; typically this is a few minutes. The 560
maximum value is 18 hours 12 minutes and 15 seconds. 561

3.1.2.11 Variable header non normative example 562

Figure 3.6 - Variable header non normative example 563

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

byte 6 ‘T’ 0 1 0 1 0 1 0 0

Protocol Level

 Description 7 6 5 4 3 2 1 0

byte 7 Level (4) 0 0 0 0 0 1 0 0

Connect Flags

byte 8

User Name Flag (1)

Password Flag (1)

Will Retain (0)

Will QoS (01)

Will Flag (1)

Clean Session (1)

Reserved (0)

1

1

0

0

1

1

1

0

Keep Alive

byte 9 Keep Alive MSB (0) 0 0 0 0 0 0 0 0

byte 10 Keep Alive LSB (10) 0 0 0 0 1 0 1 0

 564

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 29 of 81

3.1.3 Payload 565

The payload of the CONNECT Packet contains one or more length-prefixed fields, whose presence is 566
determined by the flags in the variable header. These fields, if present, MUST appear in the order Client 567
Identifier, Will Topic, Will Message, User Name, Password [MQTT-3.1.3-1]. 568

3.1.3.1 Client Identifier 569

The Client Identifier (ClientId) identifies the Client to the Server. Each Client connecting to the Server has 570
a unique ClientId. The ClientId MUST be used by Clients and by Servers to identify state that they hold 571
relating to this MQTT Session between the Client and the Server [MQTT-3.1.3-2]. 572

 573

The Client Identifier (ClientId) MUST be present and MUST be the first field in the CONNECT packet 574
payload [MQTT-3.1.3-3]. 575

 576

The ClientId MUST be a UTF-8 encoded string as defined in Section 1.5.3 [MQTT-3.1.3-4]. 577
 578
The Server MUST allow ClientIds which are between 1 and 23 UTF-8 encoded bytes in length, and that 579
contain only the characters 580

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" [MQTT-3.1.3-5]. 581

 582

The Server MAY allow ClientId’s that contain more than 23 encoded bytes. The Server MAY allow 583
ClientId’s that contain characters not included in the list given above. 584
 585
A Server MAY allow a Client to supply a ClientId that has a length of zero bytes, however if it does so the 586
Server MUST treat this as a special case and assign a unique ClientId to that Client. It MUST then 587
process the CONNECT packet as if the Client had provided that unique ClientId [MQTT-3.1.3-6]. 588
 589
If the Client supplies a zero-byte ClientId, the Client MUST also set CleanSession to 1 [MQTT-3.1.3-7]. 590
 591
If the Client supplies a zero-byte ClientId with CleanSession set to 0, the Server MUST respond to the 592
CONNECT Packet with a CONNACK return code 0x02 (Identifier rejected) and then close the Network 593
Connection [MQTT-3.1.3-8]. 594
 595
If the Server rejects the ClientId it MUST respond to the CONNECT Packet with a CONNACK return code 596
0x02 (Identifier rejected) and then close the Network Connection [MQTT-3.1.3-9]. 597

 598

Non normative comment 599

A Client implementation could provide a convenience method to generate a random ClientId. Use 600
of such a method should be actively discouraged when the CleanSession is set to 0. 601

3.1.3.2 Will Topic 602

If the Will Flag is set to 1, the Will Topic is the next field in the payload. The Will Topic MUST be a UTF-8 603
encoded string as defined in Section 1.5.3 [MQTT-3.1.3-10]. 604

3.1.3.3 Will Message 605

If the Will Flag is set to 1 the Will Message is the next field in the payload. The Will Message defines the 606
Application Message that is to be published to the Will Topic as described in Section 3.1.2.5. This field 607
consists of a two byte length followed by the payload for the Will Message expressed as a sequence of 608
zero or more bytes. The length gives the number of bytes in the data that follows and does not include the 609
2 bytes taken up by the length itself. 610

 611

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 30 of 81

When the Will Message is published to the Will Topic its payload consists only of the data portion of this 612
field, not the first two length bytes. 613

3.1.3.4 User Name 614

If the User Name Flag is set to 1, this is the next field in the payload. The User Name MUST be a UTF-8 615
encoded string as defined in Section 1.5.3 [MQTT-3.1.3-11]. It can be used by the Server for 616
authentication and authorization. 617

3.1.3.5 Password 618

If the Password Flag is set to 1, this is the next field in the payload. The Password field contains 0 to 619
65535 bytes of binary data prefixed with a two byte length field which indicates the number of bytes used 620
by the binary data (it does not include the two bytes taken up by the length field itself). 621

Figure 3.7 - Password bytes 622

Bit 7 6 5 4 3 2 1 0

byte 1 Data length MSB

byte 2 Data length LSB

byte 3 …. Data, if length > 0.

 623

3.1.4 Response 624

Note that a Server MAY support multiple protocols (including earlier versions of this protocol) on the same 625
TCP port or other network endpoint. If the Server determines that the protocol is MQTT 3.1.1 then it 626
validates the connection attempt as follows. 627

 628

1. If the Server does not receive a CONNECT Packet within a reasonable amount of time after the 629
Network Connection is established, the Server SHOULD close the connection. 630
 631

2. The Server MUST validate that the CONNECT Packet conforms to section 3.1 and close the 632
Network Connection without sending a CONNACK if it does not conform [MQTT-3.1.4-1]. 633
 634

3. The Server MAY check that the contents of the CONNECT Packet meet any further restrictions 635
and MAY perform authentication and authorization checks. If any of these checks fail, it SHOULD 636
send an appropriate CONNACK response with a non-zero return code as described in section 3.2 637
and it MUST close the Network Connection. 638

 639

If validation is successful the Server performs the following steps. 640

 641

1. If the ClientId represents a Client already connected to the Server then the Server MUST 642
disconnect the existing Client [MQTT-3.1.4-2]. 643

 644

2. The Server MUST perform the processing of CleanSession that is described in section 3.1.2.4 645
[MQTT-3.1.4-3]. 646

 647

3. The Server MUST acknowledge the CONNECT Packet with a CONNACK Packet containing a 648
zero return code [MQTT-3.1.4-4]. 649

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 31 of 81

 650

4. Start message delivery and keep alive monitoring. 651

 652

Clients are allowed to send further Control Packets immediately after sending a CONNECT Packet; 653
Clients need not wait for a CONNACK Packet to arrive from the Server. If the Server rejects the 654
CONNECT, it MUST NOT process any data sent by the Client after the CONNECT Packet [MQTT-3.1.4-655
5]. 656
 657

Non normative comment 658
Clients typically wait for a CONNACK Packet, However, if the Client exploits its freedom to send 659
Control Packets before it receives a CONNACK, it might simplify the Client implementation as it 660
does not have to police the connected state. The Client accepts that any data that it sends before it 661
receives a CONNACK packet from the Server will not be processed if the Server rejects the 662
connection. 663

3.2 CONNACK – Acknowledge connection request 664

The CONNACK Packet is the packet sent by the Server in response to a CONNECT Packet received 665
from a Client. The first packet sent from the Server to the Client MUST be a CONNACK Packet [MQTT-666
3.2.0-1]. 667

 668

If the Client does not receive a CONNACK Packet from the Server within a reasonable amount of time, 669
the Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of 670
application and the communications infrastructure. 671

3.2.1 Fixed header 672

The fixed header format is illustrated in Figure 3.8 – CONNACK Packet fixed header. 673

Figure 3.8 – CONNACK Packet fixed header 674

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet Type (2) Reserved

 0 0 1 0 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 675

Remaining Length field 676

This is the length of the variable header. For the CONNACK Packet this has the value 2. 677

3.2.2 Variable header 678

The variable header format is illustrated in Figure 3.9 – CONNACK Packet variable header. 679

Figure 3.9 – CONNACK Packet variable header 680

 Description 7 6 5 4 3 2 1 0

Connect Acknowledge Flags Reserved SP
1

byte 1 0 0 0 0 0 0 0 X

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 32 of 81

Connect Return code

byte 2 X X X X X X X X

3.2.2.1 Connect Acknowledge Flags 681

Byte 1 is the "Connect Acknowledge Flags". Bits 7-1 are reserved and MUST be set to 0. 682
 683
Bit 0 (SP

1
) is the Session Present Flag. 684

3.2.2.2 Session Present 685

Position: bit 0 of the Connect Acknowledge Flags. 686
 687
If the Server accepts a connection with CleanSession set to 1, the Server MUST set Session Present to 0 688
in the CONNACK packet in addition to setting a zero return code in the CONNACK packet [MQTT-3.2.2-689
1]. 690
 691
If the Server accepts a connection with CleanSession set to 0, the value set in Session Present depends 692
on whether the Server already has stored Session state for the supplied client ID. If the Server has stored 693
Session state, it MUST set Session Present to 1 in the CONNACK packet [MQTT-3.2.2-2]. If the Server 694
does not have stored Session state, it MUST set Session Present to 0 in the CONNACK packet. This is in 695
addition to setting a zero return code in the CONNACK packet [MQTT-3.2.2-3]. 696
 697
The Session Present flag enables a Client to establish whether the Client and Server have a consistent 698
view about whether there is already stored Session state. 699
 700
Once the initial setup of a Session is complete, a Client with stored Session state will expect the Server to 701
maintain its stored Session state. In the event that the value of Session Present received by the Client 702
from the Server is not as expected, the Client can choose whether to proceed with the Session or to 703
disconnect. The Client can discard the Session state on both Client and Server by disconnecting, 704
connecting with Clean Session set to 1 and then disconnecting again. 705
 706
If a server sends a CONNACK packet containing a non-zero return code it MUST set Session Present to 707
0 [MQTT-3.2.2-4]. 708

 709

3.2.2.3 Connect Return code 710

Byte 2 in the Variable header. 711

 712

The values for the one byte unsigned Connect Return code field are listed in Table 3.1 – Connect Return 713
code values. If a well formed CONNECT Packet is received by the Server, but the Server is unable to 714
process it for some reason, then the Server SHOULD attempt to send a CONNACK packet containing the 715
appropriate non-zero Connect return code from this table. If a server sends a CONNACK packet 716
containing a non-zero return code it MUST then close the Network Connection [MQTT-3.2.2-5]. 717

Table 3.1 – Connect Return code values 718

Value Return Code Response Description

0 0x00 Connection Accepted Connection accepted

1 0x01 Connection Refused, unacceptable
protocol version

The Server does not support the level of the
MQTT protocol requested by the Client

2 0x02 Connection Refused, identifier rejected The Client identifier is correct UTF-8 but not

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 33 of 81

allowed by the Server

3 0x03 Connection Refused, Server unavailable The Network Connection has been made but
the MQTT service is unavailable

4 0x04 Connection Refused, bad user name or
password

The data in the user name or password is
malformed

5 0x05 Connection Refused, not authorized The Client is not authorized to connect

6-255 Reserved for future use

 719

If none of the return codes listed in Table 3.1 – Connect Return code values are deemed applicable, then 720
the Server MUST close the Network Connection without sending a CONNACK [MQTT-3.2.2-6]. 721

3.2.3 Payload 722

The CONNACK Packet has no payload. 723

3.3 PUBLISH – Publish message 724

A PUBLISH Control Packet is sent from a Client to a Server or from Server to a Client to transport an 725
Application Message. 726

3.3.1 Fixed header 727

Figure 3.10 – PUBLISH Packet fixed header illustrates the fixed header format: 728

Figure 3.10 – PUBLISH Packet fixed header 729

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (3) DUP flag QoS level RETAIN

 0 0 1 1 X X X X

byte 2 Remaining Length

 730

3.3.1.1 DUP 731

Position: byte 1, bit 3. 732

If the DUP flag is set to 0, it indicates that this is the first occasion that the Client or Server has attempted 733
to send this MQTT PUBLISH Packet. If the DUP flag is set to 1, it indicates that this might be re-delivery 734
of an earlier attempt to send the Packet. 735

 736

The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-deliver a PUBLISH Packet 737
[MQTT-3.3.1.-1]. The DUP flag MUST be set to 0 for all QoS 0 messages [MQTT-3.3.1-2]. 738

 739

The value of the DUP flag from an incoming PUBLISH packet is not propagated when the PUBLISH 740
Packet is sent to subscribers by the Server. The DUP flag in the outgoing PUBLISH packet is set 741
independently to the incoming PUBLISH packet, its value MUST be determined solely by whether the 742
outgoing PUBLISH packet is a retransmission [MQTT-3.3.1-3]. 743

 744

Non normative comment 745

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 34 of 81

The recipient of a Control Packet that contains the DUP flag set to 1 cannot assume that it has 746
seen an earlier copy of this packet. 747

 748

Non normative comment 749

It is important to note that the DUP flag refers to the Control Packet itself and not to the 750
Application Message that it contains. When using QoS 1, it is possible for a Client to receive a 751
PUBLISH Packet with DUP flag set to 0 that contains a repetition of an Application Message that 752
it received earlier, but with a different Packet Identifier. Section 2.3.1 provides more information 753
about Packet Identifiers. 754

3.3.1.2 QoS 755

Position: byte 1, bits 2-1. 756

This field indicates the level of assurance for delivery of an Application Message. The QoS levels are 757
listed in the Table 3.2 - QoS definitions, below. 758

 759

Table 3.2 - QoS definitions 760

QoS value Bit 2 bit 1 Description

0 0 0 At most once delivery

1 0 1 At least once delivery

2 1 0 Exactly once delivery

- 1 1 Reserved – must not be used

A PUBLISH Packet MUST NOT have both QoS bits set to 1. If a Server or Client receives a PUBLISH 761
Packet which has both QoS bits set to 1 it MUST close the Network Connection [MQTT-3.3.1-4]. 762

3.3.1.3 RETAIN 763

Position: byte 1, bit 0. 764

 765

If the RETAIN flag is set to 1, in a PUBLISH Packet sent by a Client to a Server, the Server MUST store 766
the Application Message and its QoS, so that it can be delivered to future subscribers whose 767
subscriptions match its topic name [MQTT-3.3.1-5]. When a new subscription is established, the last 768
retained message, if any, on each matching topic name MUST be sent to the subscriber [MQTT-3.3.1-6]. 769
If the Server receives a QoS 0 message with the RETAIN flag set to 1 it MUST discard any message 770
previously retained for that topic. It SHOULD store the new QoS 0 message as the new retained 771
message for that topic, but MAY choose to discard it at any time - if this happens there will be no retained 772
message for that topic [MQTT-3.3.1-7]. See Section 4.1 for more information on storing state. 773

 774

When sending a PUBLISH Packet to a Client the Server MUST set the RETAIN flag to 1 if a message is 775
sent as a result of a new subscription being made by a Client [MQTT-3.3.1-8]. It MUST set the RETAIN 776
flag to 0 when a PUBLISH Packet is sent to a Client because it matches an established subscription 777
regardless of how the flag was set in the message it received [MQTT-3.3.1-9]. 778

 779

A PUBLISH Packet with a RETAIN flag set to 1 and a payload containing zero bytes will be processed as 780
normal by the Server and sent to Clients with a subscription matching the topic name. Additionally any 781
existing retained message with the same topic name MUST be removed and any future subscribers for 782
the topic will not receive a retained message [MQTT-3.3.1-10]. “As normal” means that the RETAIN flag is 783

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 81

not set in the message received by existing Clients. A zero byte retained message MUST NOT be stored 784
as a retained message on the Server [MQTT-3.3.1-11]. 785

 786

If the RETAIN flag is 0, in a PUBLISH Packet sent by a Client to a Server, the Server MUST NOT store 787
the message and MUST NOT remove or replace any existing retained message [MQTT-3.3.1-12]. 788

 789

Non normative comment 790

Retained messages are useful where publishers send state messages on an irregular basis. A 791
new subscriber will receive the most recent state. 792

 793

Remaining Length field 794

 This is the length of variable header plus the length of the payload. 795

3.3.2 Variable header 796

The variable header contains the following fields in the order: Topic Name, Packet Identifier. 797

3.3.2.1 Topic Name 798

The Topic Name identifies the information channel to which payload data is published. 799

 800

The Topic Name MUST be present as the first field in the PUBLISH Packet Variable header. It MUST be 801
a UTF-8 encoded string [MQTT-3.3.2-1] as defined in section 1.5.3. 802

The Topic Name in the PUBLISH Packet MUST NOT contain wildcard characters [MQTT-3.3.2-2]. 803

The Topic Name in a PUBLISH Packet sent by a Server to a subscribing Client MUST match the 804
Subscription’s Topic Filter according to the matching process defined in Section 4.7 [MQTT-3.3.2-3]. 805
However, since the Server is permitted to override the Topic Name, it might not be the same as the Topic 806
Name in the original PUBLISH Packet. 807

3.3.2.2 Packet Identifier 808

The Packet Identifier field is only present in PUBLISH Packets where the QoS level is 1 or 2. Section 809
2.3.1 provides more information about Packet Identifiers. 810

3.3.2.3 Variable header non normative example 811

Figure 3.11 - Publish Packet variable header non normative example illustrates an example variable 812
header for the PUBLISH Packet briefly described in Table 3.3 - Publish Packet non normative example. 813

Table 3.3 - Publish Packet non normative example 814

Field Value

Topic Name a/b

Packet Identifier 10

 815

Figure 3.11 - Publish Packet variable header non normative example 816

 Description 7 6 5 4 3 2 1 0

Topic Name

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 81

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Packet Identifier

byte 6 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 7 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

 817

3.3.3 Payload 818

The Payload contains the Application Message that is being published. The content and format of the 819
data is application specific. The length of the payload can be calculated by subtracting the length of the 820
variable header from the Remaining Length field that is in the Fixed Header. It is valid for a PUBLISH 821
Packet to contain a zero length payload. 822

3.3.4 Response 823

The receiver of a PUBLISH Packet MUST respond according to Table 3.4 - Expected Publish Packet 824
response as determined by the QoS in the PUBLISH Packet [MQTT-3.3.4-1]. 825

Table 3.4 - Expected Publish Packet response 826

QoS Level Expected Response

QoS 0 None

QoS 1 PUBACK Packet

QoS 2 PUBREC Packet

 827

3.3.5 Actions 828

The Client uses a PUBLISH Packet to send an Application Message to the Server, for distribution to 829
Clients with matching subscriptions. 830

 831

The Server uses a PUBLISH Packet to send an Application Message to each Client which has a 832
matching subscription. 833

 834

When Clients make subscriptions with Topic Filters that include wildcards, it is possible for a Client’s 835
subscriptions to overlap so that a published message might match multiple filters. In this case the Server 836
MUST deliver the message to the Client respecting the maximum QoS of all the matching subscriptions 837
[MQTT-3.3.5-1]. In addition, the Server MAY deliver further copies of the message, one for each 838
additional matching subscription and respecting the subscription’s QoS in each case. 839

 840

The action of the recipient when it receives a PUBLISH Packet depends on the QoS level as described in 841
Section 4.3. 842

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 81

 843

If a Server implementation does not authorize a PUBLISH to be performed by a Client; it has no way of 844
informing that Client. It MUST either make a positive acknowledgement, according to the normal QoS 845
rules, or close the Network Connection [MQTT-3.3.5-2]. 846

3.4 PUBACK – Publish acknowledgement 847

A PUBACK Packet is the response to a PUBLISH Packet with QoS level 1. 848

3.4.1 Fixed header 849

Figure 3.12 - PUBACK Packet fixed header 850

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (4) Reserved

 0 1 0 0 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 851

Remaining Length field 852

This is the length of the variable header. For the PUBACK Packet this has the value 2. 853

3.4.2 Variable header 854

This contains the Packet Identifier from the PUBLISH Packet that is being acknowledged. 855

Figure 3.13 – PUBACK Packet variable header 856

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 857

3.4.3 Payload 858

The PUBACK Packet has no payload. 859

3.4.4 Actions 860

This is fully described in Section 4.3.2. 861

3.5 PUBREC – Publish received (QoS 2 publish received, part 1) 862

A PUBREC Packet is the response to a PUBLISH Packet with QoS 2. It is the second packet of the QoS 863
2 protocol exchange. 864

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 81

3.5.1 Fixed header 865

Figure 3.14 – PUBREC Packet fixed header 866

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (5) Reserved

 0 1 0 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 867

Remaining Length field 868

This is the length of the variable header. For the PUBREC Packet this has the value 2. 869

3.5.2 Variable header 870

The variable header contains the Packet Identifier from the PUBLISH Packet that is being acknowledged. 871

Figure 3.15 – PUBREC Packet variable header 872

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 873

3.5.3 Payload 874

The PUBREC Packet has no payload. 875

3.5.4 Actions 876

This is fully described in Section 4.3.3. 877

3.6 PUBREL – Publish release (QoS 2 publish received, part 2) 878

A PUBREL Packet is the response to a PUBREC Packet. It is the third packet of the QoS 2 protocol 879
exchange. 880

3.6.1 Fixed header 881

Figure 3.16 – PUBREL Packet fixed header 882

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (6) Reserved

 0 1 1 0 0 0 1 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 883

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 81

Bits 3,2,1 and 0 of the fixed header in the PUBREL Control Packet are reserved and MUST be set to 884
0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 885
Connection [MQTT-3.6.1-1]. 886

 887

Remaining Length field 888

This is the length of the variable header. For the PUBREL Packet this has the value 2. 889

3.6.2 Variable header 890

The variable header contains the same Packet Identifier as the PUBREC Packet that is being 891
acknowledged. 892

Figure 3.17 – PUBREL Packet variable header 893

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 894

3.6.3 Payload 895

The PUBREL Packet has no payload. 896

3.6.4 Actions 897

This is fully described in Section 4.3.3. 898

3.7 PUBCOMP – Publish complete (QoS 2 publish received, part 3) 899

 900

The PUBCOMP Packet is the response to a PUBREL Packet. It is the fourth and final packet of the QoS 901
2 protocol exchange. 902

3.7.1 Fixed header 903

Figure 3.18 – PUBCOMP Packet fixed header 904

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (7) Reserved

 0 1 1 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

 905

Remaining Length field 906

This is the length of the variable header. For the PUBCOMP Packet this has the value 2. 907

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 81

3.7.2 Variable header 908

The variable header contains the same Packet Identifier as the PUBREL Packet that is being 909
acknowledged. 910

Figure 3.19 – PUBCOMP Packet variable header 911

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 912

3.7.3 Payload 913

The PUBCOMP Packet has no payload. 914

3.7.4 Actions 915

This is fully described in Section 4.3.3. 916

3.8 SUBSCRIBE - Subscribe to topics 917

The SUBSCRIBE Packet is sent from the Client to the Server to create one or more Subscriptions. Each 918
Subscription registers a Client’s interest in one or more Topics. The Server sends PUBLISH Packets to 919
the Client in order to forward Application Messages that were published to Topics that match these 920
Subscriptions. The SUBSCRIBE Packet also specifies (for each Subscription) the maximum QoS with 921
which the Server can send Application Messages to the Client. 922

3.8.1 Fixed header 923

Figure 3.20 – SUBSCRIBE Packet fixed header 924

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (8) Reserved

 1 0 0 0 0 0 1 0

byte 2 Remaining Length

 925

Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are reserved and MUST be set to 926
0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 927
Connection [MQTT-3.8.1-1]. 928

 929

Remaining Length field 930

This is the length of variable header (2 bytes) plus the length of the payload. 931

3.8.2 Variable header 932

The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet 933
Identifiers. 934

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 81

3.8.2.1 Variable header non normative example 935

Figure 3.21 shows a variable header with Packet Identifier set to 10. 936

Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example 937

 Description 7 6 5 4 3 2 1 0

Packet Identifier

byte 1 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 2 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

 938

3.8.3 Payload 939

The payload of a SUBSCRIBE Packet contains a list of Topic Filters indicating the Topics to which the 940
Client wants to subscribe. The Topic Filters in a SUBSCRIBE packet payload MUST be UTF-8 encoded 941
strings as defined in Section 1.5.3 [MQTT-3.8.3-1]. A Server SHOULD support Topic filters that contain 942
the wildcard characters defined in Section 4.7.1. If it chooses not to support topic filters that contain 943
wildcard characters it MUST reject any Subscription request whose filter contains them [MQTT-3.8.3-2]. 944
Each filter is followed by a byte called the Requested QoS. This gives the maximum QoS level at which 945
the Server can send Application Messages to the Client. 946

 947

The payload of a SUBSCRIBE packet MUST contain at least one Topic Filter / QoS pair. A SUBSCRIBE 948
packet with no payload is a protocol violation [MQTT-3.8.3-3]. See section 4.8 for information about 949
handling errors. 950

 951

The requested maximum QoS field is encoded in the byte following each UTF-8 encoded topic name, and 952
these Topic Filter / QoS pairs are packed contiguously. 953

 954

Figure 3.22 – SUBSCRIBE Packet payload format 955

Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB

byte 2 Length LSB

bytes 3..N Topic Filter

Requested QoS

 Reserved QoS

byte N+1 0 0 0 0 0 0 X X

 956

The upper 6 bits of the Requested QoS byte are not used in the current version of the protocol. They are 957
reserved for future use. The Server MUST treat a SUBSCRIBE packet as malformed and close the 958
Network Connection if any of Reserved bits in the payload are non-zero, or QoS is not 0,1 or 2 [MQTT-3-959
8.3-4]. 960

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 42 of 81

3.8.3.1 Payload non normative example 961

Figure 3.23 - Payload byte format non normative example shows the payload for the SUBSCRIBE 962
Packet briefly described in Table 3.5 - Payload non normative example. 963

 964

Table 3.5 - Payload non normative example 965

Topic Name “a/b”

Requested QoS 0x01

Topic Name “c/d”

Requested QoS 0x02

Figure 3.23 - Payload byte format non normative example 966

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Requested QoS

byte 6 Requested QoS(1) 0 0 0 0 0 0 0 1

Topic Filter

byte 7 Length MSB (0) 0 0 0 0 0 0 0 0

byte 8 Length LSB (3) 0 0 0 0 0 0 1 1

byte 9 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 10 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 11 ‘d’ (0x64) 0 1 1 0 0 1 0 0

Requested QoS

byte 12 Requested QoS(2) 0 0 0 0 0 0 1 0

 967

3.8.4 Response 968

When the Server receives a SUBSCRIBE Packet from a Client, the Server MUST respond with a 969
SUBACK Packet [MQTT-3.8.4-1]. The SUBACK Packet MUST have the same Packet Identifier as the 970
SUBSCRIBE Packet that it is acknowledging [MQTT-3.8.4-2]. 971

 972

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 43 of 81

The Server is permitted to start sending PUBLISH packets matching the Subscription before the Server 973
sends the SUBACK Packet. 974

 975

If a Server receives a SUBSCRIBE Packet containing a Topic Filter that is identical to an existing 976
Subscription’s Topic Filter then it MUST completely replace that existing Subscription with a new 977
Subscription. The Topic Filter in the new Subscription will be identical to that in the previous Subscription, 978
although its maximum QoS value could be different. Any existing retained messages matching the Topic 979
Filter MUST be re-sent, but the flow of publications MUST NOT be interrupted [MQTT-3.8.4-3]. 980

 981

Where the Topic Filter is not identical to any existing Subscription’s filter, a new Subscription is created 982
and all matching retained messages are sent. 983

 984

If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it MUST handle that packet 985
as if it had received a sequence of multiple SUBSCRIBE packets, except that it combines their responses 986
into a single SUBACK response [MQTT-3.8.4-4]. 987

 988

The SUBACK Packet sent by the Server to the Client MUST contain a return code for each Topic 989
Filter/QoS pair. This return code MUST either show the maximum QoS that was granted for that 990
Subscription or indicate that the subscription failed [MQTT-3.8.4-5]. The Server might grant a lower 991
maximum QoS than the subscriber requested. The QoS of Payload Messages sent in response to a 992
Subscription MUST be the minimum of the QoS of the originally published message and the maximum 993
QoS granted by the Server. The server is permitted to send duplicate copies of a message to a 994
subscriber in the case where the original message was published with QoS 1 and the maximum QoS 995
granted was QoS 0 [MQTT-3.8.4-6]. 996

 997

Non normative examples 998
 999
If a subscribing Client has been granted maximum QoS 1 for a particular Topic Filter, then a QoS 1000
0 Application Message matching the filter is delivered to the Client at QoS 0. This means that at 1001
most one copy of the message is received by the Client. On the other hand a QoS 2 Message 1002
published to the same topic is downgraded by the Server to QoS 1 for delivery to the Client, so 1003
that Client might receive duplicate copies of the Message. 1004
 1005

If the subscribing Client has been granted maximum QoS 0, then an Application Message 1006
originally published as QoS 2 might get lost on the hop to the Client, but the Server should never 1007
send a duplicate of that Message. A QoS 1 Message published to the same topic might either get 1008
lost or duplicated on its transmission to that Client. 1009

 1010

Non normative comment 1011

Subscribing to a Topic Filter at QoS 2 is equivalent to saying "I would like to receive Messages 1012
matching this filter at the QoS with which they were published". This means a publisher is 1013
responsible for determining the maximum QoS a Message can be delivered at, but a subscriber is 1014
able to require that the Server downgrades the QoS to one more suitable for its usage. 1015

3.9 SUBACK – Subscribe acknowledgement 1016

A SUBACK Packet is sent by the Server to the Client to confirm receipt and processing of a SUBSCRIBE 1017
Packet. 1018

 1019

A SUBACK Packet contains a list of return codes, that specify the maximum QoS level that was granted 1020
in each Subscription that was requested by the SUBSCRIBE. 1021

https://tools.oasis-open.org/issues/browse/MQTT-3
https://tools.oasis-open.org/issues/browse/MQTT-3
https://tools.oasis-open.org/issues/browse/MQTT-3

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 44 of 81

3.9.1 Fixed header 1022

Figure 3.24 – SUBACK Packet fixed header 1023

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (9) Reserved

 1 0 0 1 0 0 0 0

byte 2 Remaining Length

 1024

Remaining Length field 1025

This is the length of variable header (2 bytes) plus the length of the payload. 1026

3.9.2 Variable header 1027

The variable header contains the Packet Identifier from the SUBSCRIBE Packet that is being 1028
acknowledged. Figure 3.25 - variable header format below illustrates the format of the variable header. 1029

Figure 3.25 – SUBACK Packet variable header 1030

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

3.9.3 Payload 1031

The payload contains a list of return codes. Each return code corresponds to a Topic Filter in the 1032
SUBSCRIBE Packet being acknowledged. The order of return codes in the SUBACK Packet MUST 1033
match the order of Topic Filters in the SUBSCRIBE Packet [MQTT-3.9.3-1]. 1034

 1035

Figure 3.26 - Payload format below illustrates the Return Code field encoded in a byte in the Payload. 1036

Figure 3.26 – SUBACK Packet payload format 1037

Bit 7 6 5 4 3 2 1 0

 Return Code

byte 1 X 0 0 0 0 0 X X

 1038

Allowed return codes: 1039

0x00 - Success - Maximum QoS 0 1040
0x01 - Success - Maximum QoS 1 1041
0x02 - Success - Maximum QoS 2 1042
0x80 - Failure 1043

 1044

SUBACK return codes other than 0x00, 0x01, 0x02 and 0x80 are reserved and MUST NOT be 1045
used [MQTT-3.9.3-2]. 1046

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 45 of 81

3.9.3.1 Payload non normative example 1047

Figure 3.27 - Payload byte format non normative example shows the payload for the SUBACK 1048
Packet briefly described in Table 3.6 - Payload non normative example. 1049

Table 3.6 - Payload non normative example 1050

Success - Maximum QoS 0 0

Success - Maximum QoS 2 2

Failure 128

Figure 3.27 - Payload byte format non normative example 1051

 Description 7 6 5 4 3 2 1 0

byte 1 Success - Maximum QoS 0 0 0 0 0 0 0 0 0

byte 2 Success - Maximum QoS 2 0 0 0 0 0 0 1 0

byte 3 Failure 1 0 0 0 0 0 0 0

 1052

3.10 UNSUBSCRIBE – Unsubscribe from topics 1053

An UNSUBSCRIBE Packet is sent by the Client to the Server, to unsubscribe from topics. 1054

3.10.1 Fixed header 1055

Figure 3.28 – UNSUBSCRIBE Packet Fixed header 1056

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (10) Reserved

 1 0 1 0 0 0 1 0

byte 2 Remaining Length

 1057

Bits 3,2,1 and 0 of the fixed header of the UNSUBSCRIBE Control Packet are reserved and MUST be set 1058
to 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 1059
Connection [MQTT-3.10.1-1]. 1060

 1061

Remaining Length field 1062

This is the length of variable header (2 bytes) plus the length of the payload. 1063

3.10.2 Variable header 1064

The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet 1065
Identifiers. 1066

Figure 3.29 – UNSUBSCRIBE Packet variable header 1067

Bit 7 6 5 4 3 2 1 0

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 46 of 81

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 1068

3.10.3 Payload 1069

The payload for the UNSUBSCRIBE Packet contains the list of Topic Filters that the Client wishes to 1070
unsubscribe from. The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 encoded strings as 1071
defined in Section 1.5.3, packed contiguously [MQTT-3.10.3-1]. 1072

The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter. An UNSUBSCRIBE 1073
packet with no payload is a protocol violation [MQTT-3.10.3-2]. See section 4.8 for information about 1074
handling errors. 1075

 1076

3.10.3.1 Payload non normative example 1077

Figure 3.30 - Payload byte format non normative example show the payload for the 1078
UNSUBSCRIBE Packet briefly described in Table3.7 - Payload non normative example. 1079

Table3.7 - Payload non normative example 1080

Topic Filter “a/b”

Topic Filter “c/d”

Figure 3.30 - Payload byte format non normative example 1081

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Topic Filter

byte 6 Length MSB (0) 0 0 0 0 0 0 0 0

byte 7 Length LSB (3) 0 0 0 0 0 0 1 1

byte 8 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 9 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 10 ‘d’ (0x64) 0 1 1 0 0 1 0 0

3.10.4 Response 1082

The Topic Filters (whether they contain wildcards or not) supplied in an UNSUBSCRIBE packet MUST be 1083
compared character-by-character with the current set of Topic Filters held by the Server for the Client. If 1084
any filter matches exactly then its owning Subscription is deleted, otherwise no additional processing 1085

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 47 of 81

occurs [MQTT-3.10.4-1]. 1086
 1087

If a Server deletes a Subscription: 1088

 It MUST stop adding any new messages for delivery to the Client [MQTT-3.10.4-2]. 1089

 It MUST complete the delivery of any QoS 1 or QoS 2 messages which it has started to send to 1090
the Client [MQTT-3.10.4-3]. 1091

 It MAY continue to deliver any existing messages buffered for delivery to the Client. 1092

 1093
The Server MUST respond to an UNSUBSUBCRIBE request by sending an UNSUBACK packet. The 1094
UNSUBACK Packet MUST have the same Packet Identifier as the UNSUBSCRIBE Packet [MQTT-1095
3.10.4-4]. Even where no Topic Subscriptions are deleted, the Server MUST respond with an 1096
UNSUBACK [MQTT-3.10.4-5]. 1097

 1098

If a Server receives an UNSUBSCRIBE packet that contains multiple Topic Filters it MUST handle that 1099
packet as if it had received a sequence of multiple UNSUBSCRIBE packets, except that it sends just one 1100
UNSUBACK response [MQTT-3.10.4-6]. 1101

3.11 UNSUBACK – Unsubscribe acknowledgement 1102

 1103

The UNSUBACK Packet is sent by the Server to the Client to confirm receipt of an UNSUBSCRIBE 1104
Packet. 1105

3.11.1 Fixed header 1106

Figure 3.31 – UNSUBACK Packet fixed header 1107

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (11) Reserved

 1 0 1 1 0 0 0 0

byte 2 Remaining Length (2)

 0 0 0 0 0 0 1 0

Remaining Length field 1108

This is the length of the variable header. For the UNSUBACK Packet this has the value 2. 1109

3.11.2 Variable header 1110

The variable header contains the Packet Identifier of the UNSUBSCRIBE Packet that is being 1111
acknowledged. 1112

Figure 3.32 – UNSUBACK Packet variable header 1113

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 1114

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 48 of 81

3.11.3 Payload 1115

The UNSUBACK Packet has no payload. 1116

 1117

3.12 PINGREQ – PING request 1118

The PINGREQ Packet is sent from a Client to the Server. It can be used to: 1119

1. Indicate to the Server that the Client is alive in the absence of any other Control Packets being 1120
sent from the Client to the Server. 1121

2. Request that the Server responds to confirm that it is alive. 1122

3. Exercise the network to indicate that the Network Connection is active. 1123

 1124

This Packet is used in Keep Alive processing, see Section 3.1.2.10 for more details. 1125

3.12.1 Fixed header 1126

Figure 3.33 – PINGREQ Packet fixed header 1127

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (12) Reserved

 1 1 0 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 1128

3.12.2 Variable header 1129

The PINGREQ Packet has no variable header. 1130

3.12.3 Payload 1131

The PINGREQ Packet has no payload. 1132

3.12.4 Response 1133

The Server MUST send a PINGRESP Packet in response to a PINGREQ Packet [MQTT-3.12.4-1]. 1134

3.13 PINGRESP – PING response 1135

A PINGRESP Packet is sent by the Server to the Client in response to a PINGREQ Packet. It indicates 1136
that the Server is alive. 1137

 1138

This Packet is used in Keep Alive processing, see Section 3.1.2.10 for more details. 1139

3.13.1 Fixed header 1140

Figure 3.34 – PINGRESP Packet fixed header 1141

Bit 7 6 5 4 3 2 1 0

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 49 of 81

byte 1 MQTT Control Packet type (13) Reserved

 1 1 0 1 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 1142

3.13.2 Variable header 1143

The PINGRESP Packet has no variable header. 1144

3.13.3 Payload 1145

The PINGRESP Packet has no payload. 1146

3.14 DISCONNECT – Disconnect notification 1147

The DISCONNECT Packet is the final Control Packet sent from the Client to the Server. It indicates that 1148
the Client is disconnecting cleanly. 1149

3.14.1 Fixed header 1150

Figure 3.35 – DISCONNECT Packet fixed header 1151

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (14) Reserved

 1 1 1 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

The Server MUST validate that reserved bits are set to zero and disconnect the Client if they are not zero 1152
[MQTT-3.14.1-1]. 1153

3.14.2 Variable header 1154

The DISCONNECT Packet has no variable header. 1155

3.14.3 Payload 1156

The DISCONNECT Packet has no payload. 1157

3.14.4 Response 1158

After sending a DISCONNECT Packet the Client: 1159

 MUST close the Network Connection [MQTT-3.14.4-1]. 1160

 MUST NOT send any more Control Packets on that Network Connection [MQTT-3.14.4-2]. 1161

 1162

On receipt of DISCONNECT the Server: 1163

 MUST discard any Will Message associated with the current connection without publishing it, as 1164
described in Section 3.1.2.5 [MQTT-3.14.4-3]. 1165

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 50 of 81

 SHOULD close the Network Connection if the Client has not already done so. 1166

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 51 of 81

4 Operational behavior 1167

4.1 Storing state 1168

It is necessary for the Client and Server to store Session state in order to provide Quality of Service 1169
guarantees. The Client and Server MUST store Session state for the entire duration of the Session 1170
[MQTT-4.1.0-1]. A Session MUST last at least as long it has an active Network Connection [MQTT-4.1.0-1171
2]. 1172

 1173

Retained messages do not form part of the Session state in the Server. The Server SHOULD retain such 1174
messages until deleted by a Client. 1175

 1176

Non normative comment 1177

The storage capabilities of Client and Server implementations will of course have limits in terms 1178
of capacity and may be subject to administrative policies such as the maximum time that Session 1179
state is stored between Network Connections. Stored Session state can be discarded as a result 1180
of an administrator action, including an automated response to defined conditions. This has the 1181
effect of terminating the Session. These actions might be prompted by resource constraints or for 1182
other operational reasons. It is prudent to evaluate the storage capabilities of the Client and 1183
Server to ensure that they are sufficient. 1184

 1185

Non normative comment 1186

It is possible that hardware or software failures may result in loss or corruption of Session state 1187
stored by the Client or Server. 1188

 1189

Non normative comment 1190

Normal operation of the Client of Server could mean that stored state is lost or corrupted because 1191
of administrator action, hardware failure or software failure. An administrator action could be an 1192
automated response to defined conditions. These actions might be prompted by resource 1193
constraints or for other operational reasons. For example the server might determine that based 1194
on external knowledge, a message or messages can no longer be delivered to any current or 1195
future client. 1196

 1197

Non normative comment 1198

An MQTT user should evaluate the storage capabilities of the MQTT Client and Server 1199
implementations to ensure that they are sufficient for their needs. 1200

 1201

4.1.1 Non normative example 1202

For example, a user wishing to gather electricity meter readings may decide that they need to use QoS 1 1203
messages because they need to protect the readings against loss over the network, however they may 1204
have determined that the power supply is sufficiently reliable that the data in the Client and Server can be 1205
stored in volatile memory without too much risk of its loss. 1206

Conversely a parking meter payment application provider might decide that there are no circumstances 1207
where a payment message can be lost so they require that all data are force written to non-volatile 1208
memory before it is transmitted across the network. 1209

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 52 of 81

4.2 Network Connections 1210

The MQTT protocol requires an underlying transport that provides an ordered, lossless, stream of bytes 1211
from the Client to Server and Server to Client. 1212

 1213

Non normative comment 1214

The transport protocol used to carry MQTT 3.1 was TCP/IP as defined in [RFC793]. TCP/IP can 1215
be used for MQTT 3.1.1. The following are also suitable: 1216

 TLS [RFC5246] 1217

 WebSocket [RFC6455] 1218

Non normative comment 1219

TCP ports 8883 and 1883 are registered with IANA for MQTT TLS and non TLS communication 1220
respectively. 1221

 1222

Connectionless network transports such as User Datagram Protocol (UDP) are not suitable on their own 1223
because they might lose or reorder data. 1224

4.3 Quality of Service levels and protocol flows 1225

MQTT delivers Application Messages according to the Quality of Service (QoS) levels defined here. The 1226
delivery protocol is symmetric, in the description below the Client and Server can each take the role of 1227
either Sender or Receiver. The delivery protocol is concerned solely with the delivery of an application 1228
message from a single Sender to a single Receiver. When the Server is delivering an Application 1229
Message to more than one Client, each Client is treated independently. The QoS level used to deliver an 1230
Application Message outbound to the Client could differ from that of the inbound Application Message. 1231

The non-normative flow diagrams in the following sections are intended to show possible implementation 1232
approaches. 1233

4.3.1 QoS 0: At most once delivery 1234

The message is delivered according to the capabilities of the underlying network. No response is sent by 1235
the receiver and no retry is performed by the sender. The message arrives at the receiver either once or 1236
not at all. 1237

 1238

In the QoS 0 delivery protocol, the Sender 1239

 MUST send a PUBLISH packet with QoS=0, DUP=0 [MQTT-4.3.1-1]. 1240

 1241

In the QoS 0 delivery protocol, the Receiver 1242

 Accepts ownership of the message when it receives the PUBLISH packet. 1243

Figure 4.1 – QoS 0 protocol flow diagram, non normative example 1244

Sender Action Control Packet Receiver Action

PUBLISH QoS 0, DUP=0

 ---------->

 Deliver Application Message to
appropriate onward recipient(s)

http://en.wikipedia.org/wiki/User_Datagram_Protocol

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 53 of 81

4.3.2 QoS 1: At least once delivery 1245

This quality of service ensures that the message arrives at the receiver at least once. A QoS 1 PUBLISH 1246
Packet has a Packet Identifier in its variable header and is acknowledged by a PUBACK Packet. Section 1247
2.3.1 provides more information about Packet Identifiers. 1248

 1249

In the QoS 1 delivery protocol, the Sender 1250

 MUST assign an unused Packet Identifier each time it has a new Application Message to 1251
publish. 1252

 MUST send a PUBLISH Packet containing this Packet Identifier with QoS=1, DUP=0. 1253

 MUST treat the PUBLISH Packet as “unacknowledged” until it has received the corresponding 1254
PUBACK packet from the receiver. See Section 4.4 for a discussion of unacknowledged 1255
messages. 1256

[MQTT-4.3.2-1]. 1257

The Packet Identifier becomes available for reuse once the Sender has received the PUBACK Packet. 1258

 1259

Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it 1260
is waiting to receive acknowledgements. 1261

 1262

In the QoS 1 delivery protocol, the Receiver 1263

 MUST respond with a PUBACK Packet containing the Packet Identifier from the incoming 1264
PUBLISH Packet, having accepted ownership of the Application Message 1265

 After it has sent a PUBACK Packet the Receiver MUST treat any incoming PUBLISH packet that 1266
contains the same Packet Identifier as being a new publication, irrespective of the setting of its 1267
DUP flag. 1268

[MQTT-4.3.2-2]. 1269

 1270

Figure 4.2 – QoS 1 protocol flow diagram, non normative example 1271

Sender Action Control Packet Receiver action

Store message

Send PUBLISH QoS 1, DUP 0,
 <Packet Identifier>

---------->

 Initiate onward delivery of the
Application Message

1

 <---------- Send PUBACK <Packet
Identifier>

Discard message

1272

1
The receiver is not required to complete delivery of the Application Message before sending the 1273

PUBACK. When its original sender receives the PUBACK packet, ownership of the Application 1274
Message is transferred to the receiver. 1275

 1276

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 54 of 81

4.3.3 QoS 2: Exactly once delivery 1277

This is the highest quality of service, for use when neither loss nor duplication of messages are 1278
acceptable. There is an increased overhead associated with this quality of service. 1279

 1280

A QoS 2 message has a Packet Identifier in its variable header. Section 2.3.1 provides more information 1281
about Packet Identifiers. The receiver of a QoS 2 PUBLISH Packet acknowledges receipt with a two-step 1282
acknowledgement process. 1283

 1284

In the QoS 2 delivery protocol, the Sender 1285

 MUST assign an unused Packet Identifier when it has a new Application Message to publish. 1286

 MUST send a PUBLISH packet containing this Packet Identifier with QoS=2, DUP=0. 1287

 MUST treat the PUBLISH packet as “unacknowledged” until it has received the corresponding 1288
PUBREC packet from the receiver. See Section 4.4 for a discussion of unacknowledged 1289
messages. 1290

 MUST send a PUBREL packet when it receives a PUBREC packet from the receiver. This 1291
PUBREL packet MUST contain the same Packet Identifier as the original PUBLISH packet. 1292

 MUST treat the PUBREL packet as “unacknowledged” until it has received the corresponding 1293
PUBCOMP packet from the receiver. 1294

 MUST NOT re-send the PUBLISH once it has sent the corresponding PUBREL packet. 1295

[MQTT-4.3.3-1]. 1296

The Packet Identifier becomes available for reuse once the Sender has received the PUBCOMP Packet. 1297

 1298

Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it 1299
is waiting to receive acknowledgements. 1300

 1301

In the QoS 2 delivery protocol, the Receiver 1302

 MUST respond with a PUBREC containing the Packet Identifier from the incoming PUBLISH 1303
Packet, having accepted ownership of the Application Message. 1304

 Until it has received the corresponding PUBREL packet, the Receiver MUST acknowledge any 1305
subsequent PUBLISH packet with the same Packet Identifier by sending a PUBREC. It MUST 1306
NOT cause duplicate messages to be delivered to any onward recipients in this case. 1307

 MUST respond to a PUBREL packet by sending a PUBCOMP packet containing the same 1308
Packet Identifier as the PUBREL. 1309

 After it has sent a PUBCOMP, the receiver MUST treat any subsequent PUBLISH packet that 1310
contains that Packet Identifier as being a new publication. 1311

[MQTT-4.3.3-2]. 1312

 1313

Figure 4.3 – QoS 2 protocol flow diagram, non normative example 1314

Sender Action Control Packet Receiver Action

Store message

PUBLISH QoS 2, DUP 0
 <Packet Identifier>

 ---------->

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 55 of 81

 Method A, Store message
 or
Method B, Store <Packet
Identifier> then Initiate onward
delivery of the Application
Message

1

 PUBREC <Packet Identifier>

 <----------

Discard message, Store
PUBREC received <Packet
Identifier>

PUBREL <Packet Identifier>

 ---------->

 Method A, Initiate onward
delivery of the Application
Message

1
 then discard

message
 or
Method B, Discard <Packet
Identifier>

 Send PUBCOMP <Packet
Identifier>

 <----------

Discard stored state

1315

1
The receiver is not required to complete delivery of the Application Message before sending the 1316

PUBREC or PUBCOMP. When its original sender receives the PUBREC packet, ownership of the 1317
Application Message is transferred to the receiver. 1318

Figure 4.3 shows that there are two methods by which QoS 2 can be handled by the receiver. They 1319
differ in the point within the flow at which the message is made available for onward delivery. The 1320
choice of Method A or Method B is implementation specific. As long as an implementation chooses 1321
exactly one of these approaches, this does not affect the guarantees of a QoS 2 flow. 1322

 1323

4.4 Message delivery retry 1324

When a Client reconnects with CleanSession set to 0, both the Client and Server MUST re-send any 1325
unacknowledged PUBLISH Packets (where QoS > 0) and PUBREL Packets using their original Packet 1326
Identifiers [MQTT-4.4.0-1]. This is the only circumstance where a Client or Server is REQUIRED to 1327
redeliver messages. 1328

 1329
Non normative comment 1330
Historically retransmission of Control Packets was required to overcome data loss on some older 1331
TCP networks. This might remain a concern where MQTT 3.1.1 implementations are to be 1332
deployed in such environments. 1333

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 56 of 81

4.5 Message receipt 1334

When a Server takes ownership of an incoming Application Message it MUST add it to the Session state 1335
of those clients that have matching Subscriptions. Matching rules are defined in Section 4.7 [MQTT-4.5.0-1336
1]. 1337

Under normal circumstances Clients receive messages in response to Subscriptions they have created. A 1338
Client could also receive messages that do not match any of its explicit Subscriptions. This can happen if 1339
the Server automatically assigned a subscription to the Client. A Client could also receive messages 1340
while an UNSUBSCRIBE operation is in progress. The Client MUST acknowledge any Publish Packet it 1341
receives according to the applicable QoS rules regardless of whether it elects to process the Application 1342
Message that it contains [MQTT-4.5.0-2]. 1343

4.6 Message ordering 1344

A Client MUST follow these rules when implementing the protocol flows defined elsewhere in this chapter: 1345

 When it re-sends any PUBLISH packets, it MUST re-send them in the order in which the original 1346
PUBLISH packets were sent (this applies to QoS 1 and QoS 2 messages) [MQTT-4.6.0-1] 1347

 It MUST send PUBACK packets in the order in which the corresponding PUBLISH packets were 1348
received (QoS 1 messages) [MQTT-4.6.0-2] 1349

 It MUST send PUBREC packets in the order in which the corresponding PUBLISH packets were 1350
received (QoS 2 messages) [MQTT-4.6.0-3] 1351

 It MUST send PUBREL packets in the order in which the corresponding PUBREC packets were 1352
received (QoS 2 messages) [MQTT-4.6.0-4] 1353

 1354

A Server MUST by default treat each Topic as an "Ordered Topic". It MAY provide an administrative or 1355
other mechanism to allow one or more Topics to be treated as an "Unordered Topic" [MQTT-4.6.0-5]. 1356

 1357

When a Server processes a message that has been published to an Ordered Topic, it MUST follow the 1358
rules listed above when delivering messages to each of its subscribers. In addition it MUST send 1359
PUBLISH packets to consumers (for the same Topic and QoS) in the order that they were received from 1360
any given Client [MQTT-4.6.0-6]. 1361

 1362

Non normative comment 1363

The rules listed above ensure that when a stream of messages is published and subscribed to 1364
with QoS 1, the final copy of each message received by the subscribers will be in the order that 1365
they were originally published in, but the possibility of message duplication could result in a re-1366
send of an earlier message being received after one of its successor messages. For example a 1367
publisher might send messages in the order 1,2,3,4 and the subscriber might receive them in the 1368
order 1,2,3,2,3,4. 1369

 1370

If both Client and Server make sure that no more than one message is “in-flight” at any one time 1371
(by not sending a message until its predecessor has been acknowledged), then no QoS 1 1372
message will be received after any later one - for example a subscriber might receive them in the 1373
order 1,2,3,3,4 but not 1,2,3,2,3,4. Setting an in-flight window of 1 also means that order will be 1374
preserved even if the publisher sends a sequence of messages with different QoS levels on the 1375
same topic. 1376

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 57 of 81

4.7 Topic Names and Topic Filters 1377

4.7.1 Topic wildcards 1378

The topic level separator is used to introduce structure into the Topic Name. If present, it divides the 1379
Topic Name into multiple “topic levels”. 1380

A subscription’s Topic Filter can contain special wildcard characters, which allow you to subscribe to 1381
multiple topics at once. 1382

The wildcard characters can be used in Topic Filters, but MUST NOT be used within a Topic Name 1383
[MQTT-4.7.1-1]. 1384

4.7.1.1 Topic level separator 1385

The forward slash (‘/’ U+002F) is used to separate each level within a topic tree and provide a hierarchical 1386
structure to the Topic Names. The use of the topic level separator is significant when either of the two 1387
wildcard characters is encountered in Topic Filters specified by subscribing Clients. Topic level separators 1388
can appear anywhere in a Topic Filter or Topic Name. Adjacent Topic level separators indicate a zero 1389
length topic level. 1390

4.7.1.2 Multi-level wildcard 1391

The number sign (‘#’ U+0023) is a wildcard character that matches any number of levels within a topic. 1392
The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard 1393
character MUST be specified either on its own or following a topic level separator. In either case it MUST 1394
be the last character specified in the Topic Filter [MQTT-4.7.1-2]. 1395

 1396

Non normative comment 1397

For example, if a Client subscribes to “sport/tennis/player1/#”, it would receive messages 1398
published using these topic names: 1399

 “sport/tennis/player1” 1400

 “sport/tennis/player1/ranking” 1401

 “sport/tennis/player1/score/wimbledon” 1402

 1403

Non normative comment 1404

 “sport/#” also matches the singular “sport”, since # includes the parent level. 1405

 “#” is valid and will receive every Application Message 1406

 “sport/tennis/#” is valid 1407

 “sport/tennis#” is not valid 1408

 “sport/tennis/#/ranking” is not valid 1409

4.7.1.3 Single level wildcard 1410

The plus sign (‘+’ U+002B) is a wildcard character that matches only one topic level. 1411

 1412

The single-level wildcard can be used at any level in the Topic Filter, including first and last levels. Where 1413
it is used it MUST occupy an entire level of the filter [MQTT-4.7.1-3]. It can be used at more than one 1414
level in the Topic Filter and can be used in conjunction with the multilevel wildcard. 1415

 1416

Non normative comment 1417

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 58 of 81

For example, “sport/tennis/+” matches “sport/tennis/player1” and “sport/tennis/player2”, but not 1418
“sport/tennis/player1/ranking”. Also, because the single-level wildcard matches only a single level, 1419
“sport/+” does not match “sport” but it does match “sport/”. 1420

 1421

Non normative comment 1422

 “+” is valid 1423

 “+/tennis/#” is valid 1424

 “sport+” is not valid 1425

 “sport/+/player1” is valid 1426

 “/finance” matches “+/+” and “/+”, but not “+” 1427

4.7.2 Topics beginning with $ 1428

The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with Topic Names 1429
beginning with a $ character [MQTT-4.7.2-1]. The Server SHOULD prevent Clients from using such Topic 1430
Names to exchange messages with other Clients. Server implementations MAY use Topic Names that 1431
start with a leading $ character for other purposes. 1432

 1433

Non normative comment 1434

 $SYS/ has been widely adopted as a prefix to topics that contain Server-specific 1435
information or control APIs 1436

 Applications cannot use a topic with a leading $ character for their own purposes 1437

 1438

Non normative comment 1439

 A subscription to “#” will not receive any messages published to a topic beginning with a 1440
$ 1441

 A subscription to “+/monitor/Clients” will not receive any messages published to 1442
“$SYS/monitor/Clients” 1443

 A subscription to “$SYS/#” will receive messages published to topics beginning with 1444
“$SYS/” 1445

 A subscription to “$SYS/monitor/+” will receive messages published to 1446
“$SYS/monitor/Clients” 1447

 For a Client to receive messages from topics that begin with $SYS/ and from topics that 1448
don’t begin with a $, it has to subscribe to both “#” and “$SYS/#” 1449

4.7.3 Topic semantic and usage 1450

The following rules apply to Topic Names and Topic Filters: 1451

 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 1452

 Topic Names and Topic Filters are case sensitive 1453

 Topic Names and Topic Filters can include the space character 1454

 A leading or trailing ‘/’ creates a distinct Topic Name or Topic Filter 1455

 A Topic Name or Topic Filter consisting only of the ‘/’ character is valid 1456

 Topic Names and Topic Filters MUST NOT include the null character (Unicode U+0000) 1457

[Unicode] [MQTT-4.7.3-2] 1458

 Topic Names and Topic Filters are UTF-8 encoded strings, they MUST NOT encode to more than 1459
65535 bytes [MQTT-4.7.3-3]. See Section 1.5.3 1460

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 59 of 81

There is no limit to the number of levels in a Topic Name or Topic Filter, other than that imposed by the 1461
overall length of a UTF-8 encoded string. 1462

When it performs subscription matching the Server MUST NOT perform any normalization of Topic 1463
Names or Topic Filters, or any modification or substitution of unrecognized characters [MQTT-4.7.3-4]. 1464
Each non-wildcarded level in the Topic Filter has to match the corresponding level in the Topic Name 1465
character for character for the match to succeed. 1466

 1467

Non normative comment 1468

The UTF-8 encoding rules mean that the comparison of Topic Filter and Topic Name could be 1469
performed either by comparing the encoded UTF-8 bytes, or by comparing decoded Unicode 1470
characters 1471

 1472

Non normative comment 1473

 “ACCOUNTS” and “Accounts” are two different topic names 1474

 “Accounts payable” is a valid topic name 1475

 “/finance” is different from “finance” 1476

 1477

An Application Message is sent to each Client Subscription whose Topic Filter matches the Topic Name 1478
attached to an Application Message. The topic resource MAY be either predefined in the Server by an 1479
administrator or it MAY be dynamically created by the Server when it receives the first subscription or an 1480
Application Message with that Topic Name. The Server MAY also use a security component to selectively 1481
authorize actions on the topic resource for a given Client. 1482

4.8 Handling errors 1483

 1484

Unless stated otherwise, if either the Server or Client encounters a protocol violation, it MUST close the 1485
Network Connection on which it received that Control Packet which caused the protocol violation [MQTT-1486
4.8.0-1]. 1487

A Client or Server implementation might encounter a Transient Error (for example an internal buffer full 1488
condition) that prevents successful processing of an MQTT packet. 1489

If the Client or Server encounters a Transient Error while processing an inbound Control Packet it MUST 1490
close the Network Connection on which it received that Control Packet [MQTT-4.8.0-2]. If a Server 1491
detects a Transient Error it SHOULD NOT disconnect or have any other effect on its interactions with any 1492
other Client. 1493

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 60 of 81

5 Security 1494

5.1 Introduction 1495

This Chapter is provided for guidance only and is Non Normative. However, it is strongly recommended 1496
that Server implementations that offer TLS [RFC5246] SHOULD use TCP port 8883 (IANA service name: 1497
secure-mqtt). 1498

 1499

There are a number of threats that solution providers should consider. For example: 1500

 Devices could be compromised 1501

 Data at rest in Clients and Servers might be accessible 1502

 Protocol behaviors could have side effects (e.g. “timing attacks”) 1503

 Denial of Service (DoS) attacks 1504

 Communications could be intercepted, altered, re-routed or disclosed 1505

 Injection of spoofed Control Packets 1506

 1507

MQTT solutions are often deployed in hostile communication environments. In such cases, 1508
implementations will often need to provide mechanisms for: 1509

 Authentication of users and devices 1510

 Authorization of access to Server resources 1511

 Integrity of MQTT Control Packets and application data contained therein 1512

 Privacy of MQTT Control Packets and application data contained therein 1513

 1514

As a transport protocol, MQTT is concerned only with message transmission and it is the implementer’s 1515
responsibility to provide appropriate security features. This is commonly achieved by using TLS 1516

[RFC5246]. 1517

 1518

In addition to technical security issues there could also be geographic (e.g. U.S.-EU SafeHarbor 1519

[USEUSAFEHARB]), industry specific (e.g. PCI DSS [PCIDSS]) and regulatory considerations (e.g. 1520

Sarbanes-Oxley [SARBANES]). 1521

5.2 MQTT solutions: security and certification 1522

An implementation might want to provide conformance with specific industry security standards such as 1523

NIST Cyber Security Framework [NISTCSF], PCI-DSS [PCIDSS]), FIPS-140-2 [FIPS1402] and NSA Suite 1524

B [NSAB]. 1525

Guidance on using MQTT within the NIST Cyber Security Framework [NISTCSF] can be found in the 1526

MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 1527

Cybersecurity [MQTT NIST]. The use of industry proven, independently verified and certified technologies 1528

will help meet compliance requirements. 1529

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 61 of 81

5.3 Lightweight cryptography and constrained devices 1530

Advanced Encryption Standard [AES] and Data Encryption Standard [DES] are widely adopted. 1531

 1532

ISO 29192 [ISO29192] makes recommendations for cryptographic primitives specifically tuned to perform 1533

on constrained “low end” devices. 1534

5.4 Implementation notes 1535

There are many security concerns to consider when implementing or using MQTT. The following section 1536
should not be considered a “check list”. 1537

 1538

An implementation might want to achieve some, or all, of the following: 1539

5.4.1 Authentication of Clients by the Server 1540

The CONNECT Packet contains Username and Password fields. Implementations can choose how to 1541
make use of the content of these fields. They may provide their own authentication mechanism, use an 1542

external authentication system such as LDAP [RFC4511] or OAuth [RFC6749] tokens, or leverage 1543

operating system authentication mechanisms. 1544

 1545

Implementations passing authentication data in clear text, obfuscating such data elements or requiring no 1546
authentication data should be aware this can give rise to Man-in-the-Middle and replay attacks. Section 1547
5.4.5 introduces approaches to ensure data privacy. 1548

 1549

A Virtual Private Network (VPN) between the Clients and Servers can provide confidence that data is only 1550
being received from authorized Clients. 1551

 1552

Where TLS [RFC5246] is used, SSL Certificates sent from the Client can be used by the Server to 1553

authenticate the Client. 1554

 1555

An implementation might allow for authentication where the credentials are sent in an Application 1556
Message from the Client to the Server. 1557

5.4.2 Authorization of Clients by the Server 1558

An implementation may restrict access to Server resources based on information provided by the Client 1559
such as User Name, Client Identifier, the hostname/IP address of the Client, or the outcome of 1560
authentication mechanisms. 1561

5.4.3 Authentication of the Server by the Client 1562

The MQTT protocol is not trust symmetrical: it provides no mechanism for the Client to authenticate the 1563
Server. 1564

 1565

Where TLS [RFC5246] is used, SSL Certificates sent from the Server can be used by the Client to 1566

authenticate the Server. Implementations providing MQTT service for multiple hostnames from a single IP 1567

address should be aware of the Server Name Indication extension to TLS defined in section 3 of RFC 1568

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 62 of 81

6066 [RFC6066].This allows a Client to tell the Server the hostname of the Server it is trying to connect 1569

to. 1570

 1571

An implementation might allow for authentication where the credentials are sent in an Application 1572
Message from the Server to the Client. 1573

 1574

A VPN between Clients and Servers can provide confidence that Clients are connecting to the intended 1575
Server. 1576

5.4.4 Integrity of Application Messages and Control Packets 1577

Applications can independently include hash values in their Application Messages. This can provide 1578
integrity of the contents of Publish Control Packets across the network and at rest. 1579

 1580

TLS [RFC5246] provides hash algorithms to verify the integrity of data sent over the network. 1581

 1582

The use of VPNs to connect Clients and Servers can provide integrity of data across the section of the 1583
network covered by a VPN. 1584

5.4.5 Privacy of Application Messages and Control Packets 1585

TLS [RFC5246] can provide encryption of data sent over the network. There are valid TLS cipher suites 1586

that include a NULL encryption algorithm that does not encrypt data. To ensure privacy Clients and 1587
Servers should avoid these cipher suites. 1588

 1589

An application might independently encrypt the contents of its Application Messages. This could provide 1590
privacy of the Application Message both over the network and at rest. This would not provide privacy for 1591
other properties of the Application Message such as Topic Name. 1592

 1593

Client and Server implementations can provide encrypted storage for data at rest such as Application 1594
Messages stored as part of a Session. 1595

 1596

The use of VPNs to connect Clients and Servers can provide privacy of data across the section of the 1597
network covered by a VPN. 1598

5.4.6 Non-repudiation of message transmission 1599

Application designers might need to consider appropriate strategies to achieve end to end non-1600
repudiation. 1601

5.4.7 Detecting compromise of Clients and Servers 1602

Client and Server implementations using TLS [RFC5246] should provide capabilities to ensure that any 1603

SSL certificates provided when initiating a TLS [RFC5246] connection are associated with the hostname 1604

of the Client connecting or Server being connected to. 1605

 1606

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 63 of 81

Client and Server implementations using TLS [RFC5246] can choose to provide capabilities to check 1607

Certificate Revocation Lists (CRLs [RFC5280]) and Online Certificate Status Protocol (OSCP) [RFC6960] 1608

to prevent revoked certificates from being used. 1609

 1610

Physical deployments might combine tamper-proof hardware with the transmission of specific data in 1611
Application Messages. For example a meter might have an embedded GPS to ensure it is not used in an 1612

unauthorized location. [IEEE 802.1AR] is a standard for implementing mechanisms to authenticate a 1613

device’s identity using a cryptographically bound identifier. 1614

5.4.8 Detecting abnormal behaviors 1615

Server implementations might monitor Client behavior to detect potential security incidents. For example: 1616

 Repeated connection attempts 1617

 Repeated authentication attempts 1618

 Abnormal termination of connections 1619

 Topic scanning (attempts to send or subscribe to many topics) 1620

 Sending undeliverable messages (no subscribers to the topics) 1621

 Clients that connect but do not send data 1622

 1623

Server implementations might disconnect Clients that breach its security rules. 1624

 1625

Server implementations detecting unwelcome behavior might implement a dynamic block list based on 1626
identifiers such as IP address or Client Identifier. 1627

 1628

Deployments might use network level controls (where available) to implement rate limiting or blocking 1629
based on IP address or other information. 1630

5.4.9 Other security considerations 1631

If Client or Server SSL certificates are lost or it is considered that they might be compromised they should 1632

be revoked (utilizing CRLs [RFC5280] and/or OSCP [RFC6960]). 1633

 1634

Client or Server authentication credentials, such as User Name and Password, that are lost or considered 1635
compromised should be revoked and/or reissued. 1636

 1637

In the case of long lasting connections: 1638

 Client and Server implementations using TLS [RFC5246] should allow for session renegotiation 1639

to establish new cryptographic parameters (replace session keys, change cipher suites, change 1640
authentication credentials). 1641

 Servers may disconnect Clients and require them to re-authenticate with new credentials. 1642

 1643

Constrained devices and Clients on constrained networks can make use of TLS session resumption 1644

[RFC5077], in order to reduce the costs of reconnecting TLS [RFC5246] sessions. 1645

 1646

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 64 of 81

Clients connected to a Server have a transitive trust relationship with other Clients connected to the same 1647
Server and who have authority to publish data on the same topics. 1648

5.4.10 Use of SOCKS 1649

Implementations of Clients should be aware that some environments will require the use of SOCKSv5 1650
[RFC1928] proxies to make outbound Network Connections. Some MQTT implementations could make 1651
use of alternative secured tunnels (e.g. SSH) through the use of SOCKS. Where implementations choose 1652
to use SOCKS, they should support both anonymous and user-name password authenticating SOCKS 1653
proxies. In the latter case, implementations should be aware that SOCKS authentication might occur in 1654
plain-text and so should avoid using the same credentials for connection to a MQTT Server. 1655

5.4.11 Security profiles 1656

Implementers and solution designers might wish to consider security as a set of profiles which can be 1657
applied to the MQTT protocol. An example of a layered security hierarchy is presented below. 1658

5.4.11.1 Clear communication profile 1659

When using the clear communication profile, the MQTT protocol runs over an open network with no 1660
additional secure communication mechanisms in place. 1661

5.4.11.2 Secured network communication profile 1662

When using the secured network communication profile, the MQTT protocol runs over a physical or virtual 1663
network which has security controls e.g., VPNs or physically secure network. 1664

5.4.11.3 Secured transport profile 1665

When using the secured transport profile, the MQTT protocol runs over a physical or virtual network and 1666

using TLS [RFC5246] which provides authentication, integrity and privacy. 1667

 1668

TLS [RFC5246] Client authentication can be used in addition to – or in place of – MQTT Client 1669

authentication as provided by the Username and Password fields. 1670

5.4.11.4 Industry specific security profiles 1671

It is anticipated that the MQTT protocol will be designed into industry specific application profiles, each 1672
defining a threat model and the specific security mechanisms to be used to address these threats. 1673
Recommendations for specific security mechanisms will often be taken from existing works including: 1674

 1675

[NISTCSF] NIST Cyber Security Framework 1676

[NIST7628] NISTIR 7628 Guidelines for Smart Grid Cyber Security 1677

[FIPS1402] Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 1678

[PCIDSS] PCI-DSS Payment Card Industry Data Security Standard 1679

[NSAB] NSA Suite B Cryptography 1680

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 65 of 81

6 Using WebSocket as a network transport 1681

If MQTT is transported over a WebSocket [RFC6455] connection, the following conditions apply: 1682

 MQTT Control Packets MUST be sent in WebSocket binary data frames. If any other type of 1683
data frame is received the recipient MUST close the Network Connection [MQTT-6.0.0-1]. 1684

 A single WebSocket data frame can contain multiple or partial MQTT Control Packets. The 1685
receiver MUST NOT assume that MQTT Control Packets are aligned on WebSocket frame 1686
boundaries [MQTT-6.0.0-2]. 1687

 The client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers [MQTT-6.0.0-3]. 1688

 The WebSocket Sub Protocol name selected and returned by the server MUST be “mqtt” 1689
[MQTT-6.0.0-4]. 1690

 The WebSocket URI used to connect the client and server has no impact on the MQTT protocol. 1691

6.1 IANA Considerations 1692

This specification requests IANA to register the WebSocket MQTT sub-protocol under the “WebSocket 1693
Subprotocol Name” registry with the following data: 1694

 1695

Figure 6.1 - IANA WebSocket Identifier 1696

Subprotocol Identifier mqtt

Subprotocol Common Name mqtt

Subprotocol Definition http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

 1697

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 66 of 81

7 Conformance 1698

The MQTT specification defines conformance for MQTT Client implementations and MQTT Server 1699
implementations. 1700

 1701

An MQTT implementation MAY conform as both an MQTT Client and MQTT Server implementation. A 1702
Server that both accepts inbound connections and establishes outbound connections to other Servers 1703
MUST conform as both an MQTT Client and MQTT Server [MQTT-7.0.0-1]. 1704

 1705

Conformant implementations MUST NOT require the use of any extensions defined outside of this 1706
specification in order to interoperate with any other conformant implementation [MQTT-7.0.0-2]. 1707

7.1 Conformance Targets 1708

7.1.1 MQTT Server 1709

An MQTT Server conforms to this specification only if it satisfies all the statements below: 1710

1. The format of all Control Packets that the Server sends matches the format described in Chapter 2 and 1711
Chapter 3. 1712

2. It follows the Topic matching rules described in Section 4.7. 1713

3. It satisfies all of the MUST level requirements in the following chapters that are identified except for 1714
those that only apply to the Client: 1715

- Chapter 1 - Introduction 1716

 - Chapter 2 - MQTT Control Packet format 1717

 - Chapter 3 - MQTT Control Packets 1718

 - Chapter 4 - Operational behavior 1719

- Chapter 6 - (if MQTT is transported over a WebSocket connection) 1720

- Chapter 7 - Conformance Targets 1721

 1722

A conformant Server MUST support the use of one or more underlying transport protocols that provide an 1723
ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.1-1]. However 1724
conformance does not depend on it supporting any specific transport protocols. A Server MAY support 1725
any of the transport protocols listed in Section 4.2, or any other transport protocol that meets the 1726
requirements of [MQTT-7.1.1-1]. 1727

7.1.2 MQTT Client 1728

An MQTT Client conforms to this specification only if it satisfies all the statements below: 1729

1. The format of all Control Packets that the Client sends matches the format described in Chapter 2 and 1730
Chapter 3. 1731

2. It satisfies all of the MUST level requirements in the following chapters that are identified except for 1732
those that only apply to the Server: 1733

- Chapter 1 - Introduction 1734

 - Chapter 2 - MQTT Control Packet format 1735

- Chapter 3 - MQTT Control Packets 1736

- Chapter 4 - Operational behavior 1737

- Chapter 6 - (if MQTT is transported over a WebSocket connection) 1738

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 67 of 81

- Chapter 7 - Conformance Targets 1739

 1740

A conformant Client MUST support the use of one or more underlying transport protocols that provide an 1741
ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.2-1]. However 1742
conformance does not depend on it supporting any specific transport protocols. A Client MAY support any 1743
of the transport protocols listed in Section 4.2, or any other transport protocol that meets the requirements 1744
of [MQTT-7.1.2-1]. 1745

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 68 of 81

Appendix A. Acknowledgements (non normative) 1746

The TC owes special thanks to Dr Andy Stanford-Clark and Arlen Nipper as the original inventors of the 1747
MQTT protocol and for their continued support with the standardization process. 1748

 1749

The following individuals were members of the OASIS Technical Committee during the creation of this 1750
specification and their contributions are gratefully acknowledged: 1751

 Sanjay Aiyagari (VMware, Inc.) 1752

 Ben Bakowski (IBM) 1753

 Andrew Banks (IBM) 1754

 Arthur Barr (IBM) 1755

 William Bathurst (Machine-to-Machine Intelligence (M2MI) Corporation) 1756

 Ken Borgendale (IBM) 1757

 Geoff Brown (Machine-to-Machine Intelligence (M2MI) Corporation) 1758

 James Butler (Cimetrics Inc.) 1759

 Marco Carrer (Eurotech S.p.A.) 1760

 Raphael Cohn (Individual) 1761

 Sarah Cooper (Machine-to-Machine Intelligence (M2MI) Corporation) 1762

 Richard Coppen (IBM) 1763

 AJ Dalola (Telit Communications S.p.A.) 1764

 Mark Darbyshire (TIBCO Software Inc.) 1765

 Scott deDeugd (IBM) 1766

 Paul Duffy (Cisco Systems) 1767

 Phili DesAutels (LogMeIn Inc.) 1768

 John Fallows (Kaazing) 1769

 Pradeep Fernando (WSO2) 1770

 Paul Fremantle (WSO2) 1771

 Thomas Glover (Cognizant Technology Solutions) 1772

 Rahul Gupta (IBM) 1773

 Steve Huston (Individual) 1774

 Wes Johnson (Eurotech S.p.A.) 1775

 Christopher Kelley (Cisco Systems) 1776

 David Kemper (TIBCO Software Inc.) 1777

 James Kirkland (Red Hat) 1778

 Alex Kritikos (Software AG, Inc.) 1779

 Louis-P. Lamoureux (Machine-to-Machine Intelligence (M2MI) Corporation) 1780

 David Locke (IBM) 1781

 Shawn McAllister (Solace Systems) 1782

 Dale Moberg (Axway Software) 1783

 Manu Namboodiri (Machine-to-Machine Intelligence (M2MI) Corporation) 1784

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 69 of 81

 Peter Niblett (IBM) 1785

 Arlen Nipper (Individual) 1786

 Julien Niset (Machine-to-Machine Intelligence (M2MI) Corporation) 1787

 Mark Nixon (Emerson Process Management) 1788

 Nicholas O'Leary (IBM) 1789

 Sandor Palfy (LogMeIn Inc.) 1790

 Dominik Obermaier (dc-square GmbH) 1791

 Pavan Reddy (Cisco Systems) 1792

 Andrew Schofield (IBM) 1793

 Wadih Shaib (BlackBerry) 1794

 Ian Skerrett (Eclipse Foundation) 1795

 Joe Speed (IBM) 1796

 Allan Stockdill-Mander (IBM) 1797

 Gary Stuebing (Cisco Systems) 1798

 Steve Upton (IBM) 1799

 James Wert jr. (Telit Communications S.p.A.) 1800

 T. Wyatt (Individual) 1801

 SHAWN XIE (Machine-to-Machine Intelligence (M2MI) Corporation) 1802

 Dominik Zajac (dc-square GmbH) 1803

 Ed Briggs (Microsoft) 1804

 1805

Secretary: 1806
Geoff Brown (geoff.brown@m2mi.com), M2MI 1807

 1808

mailto:geoff.brown@m2mi.com
http://www.m2mi.com/

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 70 of 81

Appendix B. Mandatory normative statements (non 1809

normative) 1810

This Appendix is non-normative and is provided as a convenient summary of the numbered conformance 1811
statements found in the main body of this document. See Chapter 7 for a definitive list of conformance 1812
requirements. 1813

Normative
Statement Number

Normative Statement

[MQTT-1.5.3-1] The character data in a UTF-8 encoded string MUST be well-formed UTF-8 as
defined by the Unicode specification [Unicode] and restated in RFC 3629
[RFC3629]. In particular this data MUST NOT include encodings of code points
between U+D800 and U+DFFF. If a Server or Client receives a Control Packet
containing ill-formed UTF-8 it MUST close the Network Connection.

[MQTT-1.5.3-2] A UTF-8 encoded string MUST NOT include an encoding of the null character
U+0000. If a receiver (Server or Client) receives a Control Packet containing
U+0000 it MUST close the Network Connection.

[MQTT-1.5.3-3] A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always to be interpreted to
mean U+FEFF ("ZERO WIDTH NO-BREAK SPACE") wherever it appears in a
string and MUST NOT be skipped over or stripped off by a packet receiver.

[MQTT-2.2.2-1] Where a flag bit is marked as “Reserved” in Table 2.2 - Flag Bits, it is reserved
for future use and MUST be set to the value listed in that table.

[MQTT-2.2.2-2] If invalid flags are received, the receiver MUST close the Network Connection.

[MQTT-2.3.1-1] SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0) Control
Packets MUST contain a non-zero 16-bit Packet Identifier.

[MQTT-2.3.1-2] Each time a Client sends a new packet of one of these types it MUST assign it a
currently unused Packet Identifier.

[MQTT-2.3.1-3] If a Client re-sends a particular Control Packet, then it MUST use the same
Packet Identifier in subsequent re-sends of that packet. The Packet Identifier
becomes available for reuse after the Client has processed the corresponding
acknowledgement packet. In the case of a QoS 1 PUBLISH this is the
corresponding PUBACK; in the case of QO2 it is PUBCOMP. For SUBSCRIBE
or UNSUBSCRIBE it is the corresponding SUBACK or UNSUBACK.

[MQTT-2.3.1-4] The same conditions [MQTT-2.3.1-3] apply to a Server when it sends a
PUBLISH with QoS >0.

[MQTT-2.3.1-5] A PUBLISH Packet MUST NOT contain a Packet Identifier if its QoS value is set
to 0.

[MQTT-2.3.1-6] A PUBACK, PUBREC or PUBREL Packet MUST contain the same Packet
Identifier as the PUBLISH Packet that was originally sent.

[MQTT-2.3.1-7] Similarly to [MQTT-2.3.1-6], SUBACK and UNSUBACK MUST contain the
Packet Identifier that was used in the corresponding SUBSCRIBE and
UNSUBSCRIBE Packet respectively.

[MQTT-3.1.0-1] After a Network Connection is established by a Client to a Server, the first Packet
sent from the Client to the Server MUST be a CONNECT Packet.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 71 of 81

[MQTT-3.1.0-2] The Server MUST process a second CONNECT Packet sent from a Client as a
protocol violation and disconnect the Client.

[MQTT-3.1.2-1] If the protocol name is incorrect the Server MAY disconnect the Client, or it MAY
continue processing the CONNECT packet in accordance with some other
specification. In the latter case, the Server MUST NOT continue to process the
CONNECT packet in line with this specification.

[MQTT-3.1.2-2] The Server MUST respond to the CONNECT Packet with a CONNACK return
code 0x01 (unacceptable protocol level) and then disconnect the Client if the
Protocol Level is not supported by the Server.

[MQTT-3.1.2-3] The Server MUST validate that the reserved flag in the CONNECT Control
Packet is set to zero and disconnect the Client if it is not zero.

[MQTT-3.1.2-4] If CleanSession is set to 0, the Server MUST resume communications with the
Client based on state from the current Session (as identified by the Client
identifier). If there is no Session associated with the Client identifier the Server
MUST create a new Session. The Client and Server MUST store the Session
after the Client and Server are disconnected.

[MQTT-3.1.2-5] After the disconnection of a Session that had CleanSession set to 0, the Server
MUST store further QoS 1 and QoS 2 messages that match any subscriptions
that the client had at the time of disconnection as part of the Session state.

[MQTT-3.1.2-6] If CleanSession is set to 1, the Client and Server MUST discard any previous
Session and start a new one. This Session lasts as long as the Network
Connection. State data associated with this Session MUST NOT be reused in
any subsequent Session.

[MQTT-3.1.2.7] Retained messages do not form part of the Session state in the Server, they
MUST NOT be deleted when the Session ends.

[MQTT-3.1.2-8] If the Will Flag is set to 1 this indicates that, if the Connect request is accepted, a
Will Message MUST be stored on the Server and associated with the Network
Connection. The Will Message MUST be published when the Network
Connection is subsequently closed unless the Will Message has been deleted by
the Server on receipt of a DISCONNECT Packet.

[MQTT-3.1.2-9] If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect
Flags will be used by the Server, and the Will Topic and Will Message fields
MUST be present in the payload.

[MQTT-3.1.2-10] The Will Message MUST be removed from the stored Session state in the Server
once it has been published or the Server has received a DISCONNECT packet
from the Client.

[MQTT-3.1.2-11] If the Will Flag is set to 0 the Will QoS and Will Retain fields in the Connect Flags
MUST be set to zero and the Will Topic and Will Message fields MUST NOT be
present in the payload.

[MQTT-3.1.2-12] If the Will Flag is set to 0, a Will Message MUST NOT be published when this
Network Connection ends.

[MQTT-3.1.2-13] If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00).

[MQTT-3.1.2-14] If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2
(0x02). It MUST NOT be 3 (0x03).

[MQTT-3.1.2-15] If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 72 of 81

[MQTT-3.1.2-16] If the Will Flag is set to 1 and If Will Retain is set to 0, the Server MUST publish
the Will Message as a non-retained message.

[MQTT-3.1.2-17] If the Will Flag is set to 1 and If Will Retain is set to 1, the Server MUST publish
the Will Message as a retained message.

[MQTT-3.1.2-18] If the User Name Flag is set to 0, a user name MUST NOT be present in the
payload.

[MQTT-3.1.2-19] If the User Name Flag is set to 1, a user name MUST be present in the payload.

[MQTT-3.1.2-20] If the Password Flag is set to 0, a password MUST NOT be present in the
payload.

[MQTT-3.1.2-21] If the Password Flag is set to 1, a password MUST be present in the payload.

[MQTT-3.1.2-22] If the User Name Flag is set to 0, the Password Flag MUST be set to 0.

[MQTT-3.1.2-23] It is the responsibility of the Client to ensure that the interval between Control
Packets being sent does not exceed the Keep Alive value. In the absence of
sending any other Control Packets, the Client MUST send a PINGREQ Packet.

[MQTT-3.1.2-24] If the Keep Alive value is non-zero and the Server does not receive a Control
Packet from the Client within one and a half times the Keep Alive time period, it
MUST disconnect the Network Connection to the Client as if the network had
failed.

[MQTT-3.1.3-1] These fields, if present, MUST appear in the order Client Identifier, Will Topic,
Will Message, User Name, Password.

[MQTT-3.1.3-2] Each Client connecting to the Server has a unique ClientId. The ClientId MUST
be used by Clients and by Servers to identify state that they hold relating to this
MQTT Session between the Client and the Server.

[MQTT-3.1.3-3] The Client Identifier (ClientId) MUST be present and MUST be the first field in
the CONNECT packet payload.

[MQTT-3.1.3-4] The ClientId MUST be a UTF-8 encoded string as defined in Section 1.5.3.

[MQTT-3.1.3-5] The Server MUST allow ClientIds which are between 1 and 23 UTF-8 encoded
bytes in length, and that contain only the characters

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXY
Z".

[MQTT-3.1.3-6] A Server MAY allow a Client to supply a ClientId that has a length of zero bytes.
However if it does so the Server MUST treat this as a special case and assign a
unique ClientId to that Client. It MUST then process the CONNECT packet as if
the Client had provided that unique ClientId.

[MQTT-3.1.3-7] If the Client supplies a zero-byte ClientId, the Client MUST also set
CleanSession to 1.

[MQTT-3.1.3-8] If the Client supplies a zero-byte ClientId with CleanSession set to 0, the Server
MUST respond to the CONNECT Packet with a CONNACK return code 0x02
(Identifier rejected) and then close the Network Connection.

[MQTT-3.1.3-9] If the Server rejects the ClientId it MUST respond to the CONNECT Packet with
a CONNACK return code 0x02 (Identifier rejected) and then close the Network
Connection.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 73 of 81

[MQTT-3.1.3-10] The Will Topic MUST be a UTF-8 encoded string as defined in Section ‎1.5.3.

[MQTT-3.1.3-11] The User Name MUST be a UTF-8 encoded string as defined in Section 1.5.3.

[MQTT-3.1.4-1] The Server MUST validate that the CONNECT Packet conforms to section 3.1
and close the Network Connection without sending a CONNACK if it does not
conform.

[MQTT-3.1.4-2] If the ClientId represents a Client already connected to the Server then the
Server MUST disconnect the existing Client.

[MQTT-3.1.4-3] If CONNECT validation is successful the Server MUST perform the processing of
CleanSession that is described in section 3.1.2.4.

[MQTT-3.1.4-4] If CONNECT validation is successful the Server MUST acknowledge the
CONNECT Packet with a CONNACK Packet containing a zero return code.

[MQTT-3.1.4-5] If the Server rejects the CONNECT, it MUST NOT process any data sent by the
Client after the CONNECT Packet.

[MQTT-3.2.0-1] The first packet sent from the Server to the Client MUST be a CONNACK
Packet.

[MQTT-3.2.2-1] If the Server accepts a connection with CleanSession set to 1, the Server MUST
set Session Present to 0 in the CONNACK packet in addition to setting a zero
return code in the CONNACK packet.

[MQTT-3.2.2-2] If the Server accepts a connection with CleanSession set to 0, the value set in
Session Present depends on whether the Server already has stored Session
state for the supplied client ID. If the Server has stored Session state, it MUST
set Session Present to 1 in the CONNACK packet.

[MQTT-3.2.2-3] If the Server does not have stored Session state, it MUST set Session Present to
0 in the CONNACK packet. This is in addition to setting a zero return code in the
CONNACK packet.

[MQTT-3.2.2-4] If a server sends a CONNACK packet containing a non-zero return code it MUST
set Session Present to 0.

[MQTT-3.2.2-5] If a server sends a CONNACK packet containing a non-zero return code it MUST
then close the Network Connection.

[MQTT-3.2.2-6] If none of the return codes listed in Table 3.1 – Connect Return code values are
deemed applicable, then the Server MUST close the Network Connection without
sending a CONNACK.

[MQTT-3.3.1-1] The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-
deliver a PUBLISH Packet.

[MQTT-3.3.1-2] The DUP flag MUST be set to 0 for all QoS 0 messages.

[MQTT-3.3.1-3] The value of the DUP flag from an incoming PUBLISH packet is not propagated
when the PUBLISH Packet is sent to subscribers by the Server. The DUP flag in
the outgoing PUBLISH packet is set independently to the incoming PUBLISH
packet, its value MUST be determined solely by whether the outgoing PUBLISH
packet is a retransmission.

[MQTT-3.3.1-4] A PUBLISH Packet MUST NOT have both QoS bits set to 1. If a Server or Client
receives a PUBLISH Packet which has both QoS bits set to 1 it MUST close the
Network Connection.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 74 of 81

[MQTT-3.3.1-5] If the RETAIN flag is set to 1, in a PUBLISH Packet sent by a Client to a Server,
the Server MUST store the Application Message and its QoS, so that it can be
delivered to future subscribers whose subscriptions match its topic name.

[MQTT-3.3.1-6] When a new subscription is established, the last retained message, if any, on
each matching topic name MUST be sent to the subscriber.

[MQTT-3.3.1-7] If the Server receives a QoS 0 message with the RETAIN flag set to 1 it MUST
discard any message previously retained for that topic. It SHOULD store the new
QoS 0 message as the new retained message for that topic, but MAY choose to
discard it at any time - if this happens there will be no retained message for that
topic.

[MQTT-3.3.1-8] When sending a PUBLISH Packet to a Client the Server MUST set the RETAIN
flag to 1 if a message is sent as a result of a new subscription being made by a
Client.

[MQTT-3.3.1-9] It MUST set the RETAIN flag to 0 when a PUBLISH Packet is sent to a Client
because it matches an established subscription regardless of how the flag was
set in the message it received.

[MQTT-3.3.1-10] A PUBLISH Packet with a RETAIN flag set to 1 and a payload containing zero
bytes will be processed as normal by the Server and sent to Clients with a
subscription matching the topic name. Additionally any existing retained
message with the same topic name MUST be removed and any future
subscribers for the topic will not receive a retained message.

[MQTT-3.3.1-11] A zero byte retained message MUST NOT be stored as a retained message on
the Server.

[MQTT-3.3.1-12] If the RETAIN flag is 0, in a PUBLISH Packet sent by a Client to a Server, the
Server MUST NOT store the message and MUST NOT remove or replace any
existing retained message.

[MQTT-3.3.2-1] The Topic Name MUST be present as the first field in the PUBLISH Packet
Variable header. It MUST be a UTF-8 encoded string.

[MQTT-3.3.2-2] The Topic Name in the PUBLISH Packet MUST NOT contain wildcard
characters.

[MQTT-3.3.2-3] The Topic Name in a PUBLISH Packet sent by a Server to a subscribing Client
MUST match the Subscription’s Topic Filter according to the matching process
defined in Section 4.7.

[MQTT-3.3.4-1] The receiver of a PUBLISH Packet MUST respond according to Table 3.4 -
Expected Publish Packet response as determined by the QoS in the PUBLISH
Packet.

[MQTT-3.3.5-1] The Server MUST deliver the message to the Client respecting the maximum
QoS of all the matching subscriptions.

[MQTT-3.3.5-2] If a Server implementation does not authorize a PUBLISH to be performed by a
Client; it has no way of informing that Client. It MUST either make a positive
acknowledgement, according to the normal QoS rules, or close the Network
Connection.

[MQTT-3.6.1-1] Bits 3,2,1 and 0 of the fixed header in the PUBREL Control Packet are reserved
and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat any other
value as malformed and close the Network Connection.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 75 of 81

[MQTT-3.8.1-1] Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are
reserved and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat
any other value as malformed and close the Network Connection.

[MQTT-3.8.3-1] The Topic Filters in a SUBSCRIBE packet payload MUST be UTF-8 encoded
strings as defined in Section 1.5.3.

[MQTT-3.8.3-2] If the Server chooses not to support topic filters that contain wildcard characters
it MUST reject any Subscription request whose filter contains them.

[MQTT-3.8.3-3] The payload of a SUBSCRIBE packet MUST contain at least one Topic Filter /
QoS pair. A SUBSCRIBE packet with no payload is a protocol violation.

[MQTT-3-8.3-4] The Server MUST treat a SUBSCRIBE packet as malformed and close the
Network Connection if any of Reserved bits in the payload are non-zero, or QoS
is not 0,1 or 2.

[MQTT-3.8.4-1] When the Server receives a SUBSCRIBE Packet from a Client, the Server
MUST respond with a SUBACK Packet.

[MQTT-3.8.4-2] The SUBACK Packet MUST have the same Packet Identifier as the SUBSCRIBE
Packet that it is acknowledging.

[MQTT-3.8.4-3] If a Server receives a SUBSCRIBE Packet containing a Topic Filter that is
identical to an existing Subscription’s Topic Filter then it MUST completely
replace that existing Subscription with a new Subscription. The Topic Filter in the
new Subscription will be identical to that in the previous Subscription, although its
maximum QoS value could be different. Any existing retained messages
matching the Topic Filter MUST be re-sent, but the flow of publications MUST
NOT be interrupted.

[MQTT-3.8.4-4] If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it
MUST handle that packet as if it had received a sequence of multiple
SUBSCRIBE packets, except that it combines their responses into a single
SUBACK response.

[MQTT-3.8.4-5] The SUBACK Packet sent by the Server to the Client MUST contain a return
code for each Topic Filter/QoS pair. This return code MUST either show the
maximum QoS that was granted for that Subscription or indicate that the
subscription failed.

[MQTT-3.8.4-6] The Server might grant a lower maximum QoS than the subscriber requested.
The QoS of Payload Messages sent in response to a Subscription MUST be the
minimum of the QoS of the originally published message and the maximum QoS
granted by the Server. The server is permitted to send duplicate copies of a
message to a subscriber in the case where the original message was published
with QoS 1 and the maximum QoS granted was QoS 0.

[MQTT-3.9.3-1] The order of return codes in the SUBACK Packet MUST match the order of
Topic Filters in the SUBSCRIBE Packet.

[MQTT-3.9.3-2] SUBACK return codes other than 0x00, 0x01, 0x02 and 0x80 are reserved and
MUST NOT be used.

[MQTT-3.10.1-1] Bits 3,2,1 and 0 of the fixed header of the UNSUBSCRIBE Control Packet are
reserved and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat
any other value as malformed and close the Network Connection.

[MQTT-3.10.3-1] The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 encoded strings
as defined in Section 1.5.3, packed contiguously.

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 76 of 81

[MQTT-3.10.3-2] The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic
Filter. An UNSUBSCRIBE packet with no payload is a protocol violation.

[MQTT-3.10.4-1] The Topic Filters (whether they contain wildcards or not) supplied in an
UNSUBSCRIBE packet MUST be compared character-by-character with the
current set of Topic Filters held by the Server for the Client. If any filter matches
exactly then its owning Subscription is deleted, otherwise no additional
processing occurs.

[MQTT-3.10.4-2] If a Server deletes a Subscription It MUST stop adding any new messages for
delivery to the Client.

[MQTT-3.10.4-3] If a Server deletes a Subscription It MUST complete the delivery of any QoS 1 or
QoS 2 messages which it has started to send to the Client.

[MQTT-3.10.4-4] The Server MUST respond to an UNSUBSUBCRIBE request by sending an
UNSUBACK packet. The UNSUBACK Packet MUST have the same Packet
Identifier as the UNSUBSCRIBE Packet.

[MQTT-3.10.4-5] Even where no Topic Subscriptions are deleted, the Server MUST respond with
an UNSUBACK.

[MQTT-3.10.4-6] If a Server receives an UNSUBSCRIBE packet that contains multiple Topic
Filters it MUST handle that packet as if it had received a sequence of multiple
UNSUBSCRIBE packets, except that it sends just one UNSUBACK response.

[MQTT-3.12.4-1] The Server MUST send a PINGRESP Packet in response to a PINGREQ packet.

[MQTT-3.14.1-1] The Server MUST validate that reserved bits are set to zero and disconnect the
Client if they are not zero.

[MQTT-3.14.4-1] After sending a DISCONNECT Packet the Client MUST close the Network
Connection.

[MQTT-3.14.4-2] After sending a DISCONNECT Packet the Client MUST NOT send any more
Control Packets on that Network Connection.

[MQTT-3.14.4-3] On receipt of DISCONNECT the Server MUST discard any Will Message
associated with the current connection without publishing it, as described in
Section 3.1.2.5.

[MQTT-4.1.0-1] The Client and Server MUST store Session state for the entire duration of the
Session.

[MQTT-4.1.0-2] A Session MUST last at least as long it has an active Network Connection.

[MQTT-4.3.1-1]

In the QoS 0 delivery protocol, the Sender

 MUST send a PUBLISH packet with QoS=0, DUP=0.

[MQTT-4.3.2-1]

In the QoS 1 delivery protocol, the Sender

 MUST assign an unused Packet Identifier each time it has a new
Application Message to publish.

 MUST send a PUBLISH Packet containing this Packet Identifier with
QoS=1, DUP=0.

 MUST treat the PUBLISH Packet as "unacknowledged" until it has
received the corresponding PUBACK packet from the receiver. See
Section 4.4 for a discussion of unacknowledged messages.

[MQTT-4.3.2-2] In the QoS 1 delivery protocol, the Receiver

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 77 of 81

  MUST respond with a PUBACK Packet containing the Packet Identifier
from the incoming PUBLISH Packet, having accepted ownership of the
Application Message.

 After it has sent a PUBACK Packet the Receiver MUST treat any
incoming PUBLISH packet that contains the same Packet Identifier as
being a new publication, irrespective of the setting of its DUP flag.

[MQTT-4.3.3-1]

In the QoS 2 delivery protocol, the Sender

 MUST assign an unused Packet Identifier when it has a new Application
Message to publish.

 MUST send a PUBLISH packet containing this Packet Identifier with
QoS=2, DUP=0.

 MUST treat the PUBLISH packet as "unacknowledged" until it has
received the corresponding PUBREC packet from the receiver. See
Section 4.4 for a discussion of unacknowledged messages.

 MUST send a PUBREL packet when it receives a PUBREC packet from
the receiver. This PUBREL packet MUST contain the same Packet
Identifier as the original PUBLISH packet.

 MUST treat the PUBREL packet as "unacknowledged" until it has
received the corresponding PUBCOMP packet from the receiver.

 MUST NOT re-send the PUBLISH once it has sent the corresponding
PUBREL packet.

[MQTT-4.3.3-2]

In the QoS 2 delivery protocol, the Receiver

 MUST respond with a PUBREC containing the Packet Identifier from the
incoming PUBLISH Packet, having accepted ownership of the
Application Message.

 Until it has received the corresponding PUBREL packet, the Receiver
MUST acknowledge any subsequent PUBLISH packet with the same
Packet Identifier by sending a PUBREC. It MUST NOT cause duplicate
messages to be delivered to any onward recipients in this case.

 MUST respond to a PUBREL packet by sending a PUBCOMP packet
containing the same Packet Identifier as the PUBREL.

 After it has sent a PUBCOMP, the receiver MUST treat any subsequent
PUBLISH packet that contains that Packet Identifier as being a new
publication.

[MQTT-4.4.0-1] When a Client reconnects with CleanSession set to 0, both the Client and Server
MUST re-send any unacknowledged PUBLISH Packets (where QoS > 0) and
PUBREL Packets using their original Packet Identifiers.

[MQTT-4.5.0-1] When a Server takes ownership of an incoming Application Message it MUST
add it to the Session state of those clients that have matching Subscriptions.
Matching rules are defined in Section 4.7.

[MQTT-4.5.0-2] The Client MUST acknowledge any Publish Packet it receives according to the
applicable QoS rules regardless of whether it elects to process the Application
Message that it contains.

[MQTT-4.6.0-1] When it re-sends any PUBLISH packets, it MUST re-send them in the order in
which the original PUBLISH packets were sent (this applies to QoS 1 and QoS 2
messages).

[MQTT-4.6.0-2] Client MUST send PUBACK packets in the order in which the corresponding

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 78 of 81

PUBLISH packets were received (QoS 1 messages).

[MQTT-4.6.0-3] Client MUST send PUBREC packets in the order in which the corresponding
PUBLISH packets were received (QoS 2 messages).

[MQTT-4.6.0-4] Client MUST send PUBREL packets in the order in which the corresponding
PUBREC packets were received (QoS 2 messages).

[MQTT-4.6.0-5] A Server MUST by default treat each Topic as an "Ordered Topic". It MAY
provide an administrative or other mechanism to allow one or more Topics to be
treated as an "Unordered Topic".

[MQTT-4.6.0-6] When a Server processes a message that has been published to an Ordered
Topic, it MUST follow the rules listed above when delivering messages to each of
its subscribers. In addition it MUST send PUBLISH packets to consumers (for the
same Topic and QoS) in the order that they were received from any given Client.

[MQTT-4.7.1-1] The wildcard characters can be used in Topic Filters, but MUST NOT be used
within a Topic Name.

[MQTT-4.7.1-2] The multi-level wildcard character MUST be specified either on its own or
following a topic level separator. In either case it MUST be the last character
specified in the Topic Filter.

[MQTT-4.7.1-3] The single-level wildcard can be used at any level in the Topic Filter, including
first and last levels. Where it is used it MUST occupy an entire level of the filter.

[MQTT-4.7.2-1] The Server MUST NOT match Topic Filters starting with a wildcard character (#
or +) with Topic Names beginning with a $ character.

[MQTT-4.7.3-1] All Topic Names and Topic Filters MUST be at least one character long.

[MQTT-4.7.3-2] Topic Names and Topic Filters MUST NOT include the null character (Unicode
U+0000).

[MQTT-4.7.3-3] Topic Names and Topic Filters are UTF-8 encoded strings, they MUST NOT
encode to more than 65535 bytes.

[MQTT-4.7.3-4] When it performs subscription matching the Server MUST NOT perform any
normalization of Topic Names or Topic Filters, or any modification or substitution
of unrecognized characters.

[MQTT-4.8.0-1] Unless stated otherwise, if either the Server or Client encounters a protocol
violation, it MUST close the Network Connection on which it received that Control
Packet which caused the protocol violation.

[MQTT-4.8.0-2] If the Client or Server encounters a Transient Error while processing an inbound
Control Packet it MUST close the Network Connection on which it received that
Control Packet.

[MQTT-6.0.0-1] MQTT Control Packets MUST be sent in WebSocket binary data frames. If any
other type of data frame is received the recipient MUST close the Network
Connection.

[MQTT-6.0.0-2] A single WebSocket data frame can contain multiple or partial MQTT Control
Packets. The receiver MUST NOT assume that MQTT Control Packets are
aligned on WebSocket frame boundaries.

[MQTT-6.0.0-3] The client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers.

[MQTT-6.0.0-4] The WebSocket Sub Protocol name selected and returned by the server MUST

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 79 of 81

be “mqtt”.

[MQTT-7.0.0-1] A Server that both accepts inbound connections and establishes outbound
connections to other Servers MUST conform as both an MQTT Client and MQTT
Server.

[MQTT-7.0.0-2] Conformant implementations MUST NOT require the use of any extensions
defined outside of this specification in order to interoperate with any other
conformant implementation.

[MQTT-7.1.1-1] A conformant Server MUST support the use of one or more underlying transport
protocols that provide an ordered, lossless, stream of bytes from the Client to
Server and Server to Client.

[MQTT-7.1.2-1] A conformant Client MUST support the use of one or more underlying transport
protocols that provide an ordered, lossless, stream of bytes from the Client to
Server and Server to Client.

 1814

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 80 of 81

Appendix C. Revision history (non normative) 1815

 1816

Revision Date Editor Changes Made

[02] [29 April 2013] [A Banks] [Tighten up language for Connect packet]

[03] [09 May 2013] [A Banks] [Tighten up language in Section 02 Command
Message Format]

[04] [20 May 2013] [Rahul Gupta] Tighten up language for PUBLISH message

[05] [5th June 2013] [A Banks]

[Rahul Gupta]

[Issues -5,9,13]

[Formatting and language tighten up in
PUBACK, PUBREC, PUBREL, PUBCOMP
message]

[06] [20
th
 June 2013] [Rahul Gupta] [Issue – 17, 2, 28, 33]

[Formatting and language tighten up in
SUBSCRIBE, SUBACK, UNSUBSCRIBE,
UNSUBACK, PINGREQ, PINGRESP,
DISCONNECT Control Packets]

Terms Command message change to Control
Packet

Term “message” is generically used, replaced
this word accordingly with packet, publication,
subscription.

[06] [21 June 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 12,20,15, 3, 35, 34, 23, 5,
21

Resolved Issues – 32,39, 41

[07] [03 July 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 18,11,4

Resolved Issues – 26,31,36,37

[08] [19 July 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 6, 29, 45

Resolved Issues – 36, 25, 24

Added table for fixed header and payload

[09] [01 August 2013] [A Banks] Resolved Issues – 49, 53, 46, 67, 29, 66, 62,
45, 69, 40, 61, 30

[10] [10 August 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 19, 63, 57, 65, 72

Conformance section added

[11] [10 September 2013] [A Banks]

[N O'Leary &
Rahul Gupta]

Resolved Issues – 56

Updated Conformance section

[12] [18 September 2013] [Rahul Gupta]

[A Banks]

Resolved Issues – 22, 42, 81, 84, 85, 7, 8, 14,
16, Security section is added

Resolved Issue -1

mqtt-v3.1.1-errata01-os-complete 10 December 2015
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved. Page 81 of 81

[13] [27 September 2013] [A Banks] Resolved Issues – 64, 68, 76, 86, 27, 60, 82,
55, 78, 51, 83, 80

[14] [10 October 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 58, 59, 10, 89, 90, 88, 77

Resolved Issues – 94, 96, 93, 92, 95, 87, 74,
71

[15] [24 October 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 52, 97, 98, 101

Resolved Issues – 100

Added normative statement numbering and
Appendix A

[16] [21 November 2013] [A Banks] Resolved Issues -103, 104, 44

[17] [05 December 2013] [A Banks]

[Rahul Gupta]

Resolved Issues – 105, 70, 102, 106, 107, 108,
109, 110

Updated normative statement numbering and
Appendix A

[CSD04] [28

January 2014] [Rahul Gupta] Resolved Issues – 112, 114, 115, 120, 117,

134, 132, 133, 130, 131, 129

[18] [20 February 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 175, 139, 176, 166, 149,
164, 140, 154, 178, 188, 181, 155, 170, 196,
173, 157, 195, 191, 150, 179, 185, 174, 163

Resolved Issues – 135, 136, 147, 161, 169,
180, 182, 184, 189, 187

[19] [28 February 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 167, 192, 141, 138, 137,
198, 165

Resolved Issues – 199, 144, 159,

[20] [07 March 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 113, 162, 158, 146

Resolved Issues – 172, 190, 202, 201

[21] [17 March 2014] [A Banks]

[Rahul Gupta]

Resolved Issues – 151, 194, 160, 168

Resolved Issues – 205,

[22] [27 March 2014] [Rahul Gupta]

[A Banks]

Resolved Issues – 145, 186, 142

Resolved Issues – 152, 193

[23] [28 March 2014] [A Banks] Resolved Issues – 204, 148, 210, 208, 209,
171, 183, 117, 212

[24] [7 April 2014] [Rahul Gupta]

[A Banks]

Added Table of figures

Corrected Issue 209

[25] [8 May 2014] [Rahul Gupta] Resolved Issues – 213, 214

[25] [3 September 2014] [A Banks] Resolved Issues – 240, 242, 246

[26] [17 September 2014] [Rahul Gupta] Resolved Issues – 247

[27] [18 November 2015] [Rahul Gupta]

[A Banks]

Updated with Errata 01 for Resolved Issue -
275

 1817

