refactor(ft): employ `emqx_wdgraph` for coverage computation
Also describe how coverage problem maps to shortest path problem.
This commit is contained in:
parent
b189ee463c
commit
8e6f960c09
|
@ -40,10 +40,7 @@
|
|||
filemeta(),
|
||||
{node(), filefrag({filemeta, filemeta()})}
|
||||
),
|
||||
segs :: gb_trees:tree(
|
||||
{emqx_ft:offset(), _Locality, _MEnd, node()},
|
||||
[filefrag({segment, segmentinfo()})]
|
||||
),
|
||||
segs :: emqx_wdgraph:t(emqx_ft:offset(), {node(), filefrag({segment, segmentinfo()})}),
|
||||
size :: emqx_ft:bytes()
|
||||
}).
|
||||
|
||||
|
@ -66,7 +63,7 @@ new(Size) ->
|
|||
#asm{
|
||||
status = {incomplete, {missing, filemeta}},
|
||||
meta = orddict:new(),
|
||||
segs = gb_trees:empty(),
|
||||
segs = emqx_wdgraph:new(),
|
||||
size = Size
|
||||
}.
|
||||
|
||||
|
@ -154,142 +151,32 @@ append_segmentinfo(Asm, Node, Fragment = #{fragment := {segment, Info}}) ->
|
|||
segs = Segs
|
||||
}.
|
||||
|
||||
coverage(Segs, Size) ->
|
||||
find_shortest_path(Segs, 0, Size).
|
||||
|
||||
find_shortest_path(G1, From, To) ->
|
||||
add_edge(Segs, Offset, End, Weight, Label) ->
|
||||
% NOTE
|
||||
% This is a Dijkstra shortest path algorithm implemented on top of `gb_trees`.
|
||||
% It is one-way right now, for simplicity sake.
|
||||
G2 = set_cost(G1, From, 0, []),
|
||||
case find_shortest_path(G2, From, 0, To) of
|
||||
{found, G3} ->
|
||||
construct_path(G3, From, To, []);
|
||||
{error, Last} ->
|
||||
% NOTE: this is actually just an estimation of what is missing.
|
||||
{missing, {segment, Last, emqx_maybe:define(find_successor(G2, Last), To)}}
|
||||
end.
|
||||
|
||||
find_shortest_path(G1, Node, Cost, Target) ->
|
||||
Edges = get_edges(G1, Node),
|
||||
G2 = update_neighbours(G1, Node, Cost, Edges),
|
||||
case take_queued(G2) of
|
||||
{Target, _NextCost, G3} ->
|
||||
{found, G3};
|
||||
{Next, NextCost, G3} ->
|
||||
find_shortest_path(G3, Next, NextCost, Target);
|
||||
none ->
|
||||
{error, Node}
|
||||
end.
|
||||
|
||||
construct_path(_G, From, From, Acc) ->
|
||||
Acc;
|
||||
construct_path(G, From, To, Acc) ->
|
||||
{Prev, Label} = get_label(G, To),
|
||||
construct_path(G, From, Prev, [Label | Acc]).
|
||||
|
||||
update_neighbours(G1, Node, NodeCost, Edges) ->
|
||||
lists:foldl(
|
||||
fun({Neighbour, Weight, Label}, GAcc) ->
|
||||
case is_visited(GAcc, Neighbour) of
|
||||
false ->
|
||||
NeighCost = NodeCost + Weight,
|
||||
CurrentCost = get_cost(GAcc, Neighbour),
|
||||
case NeighCost < CurrentCost of
|
||||
true ->
|
||||
set_cost(GAcc, Neighbour, NeighCost, {Node, Label});
|
||||
false ->
|
||||
GAcc
|
||||
end;
|
||||
true ->
|
||||
GAcc
|
||||
end
|
||||
end,
|
||||
G1,
|
||||
Edges
|
||||
).
|
||||
|
||||
add_edge(G, Node, ToNode, WeightIn, EdgeLabel) ->
|
||||
Edges = tree_lookup({Node}, G, []),
|
||||
case lists:keyfind(ToNode, 1, Edges) of
|
||||
{ToNode, Weight, _} when Weight =< WeightIn ->
|
||||
% We are expressing coverage problem as a shortest path problem on weighted directed
|
||||
% graph, where nodes are segments offsets, two nodes are connected with edge if
|
||||
% there is a segment which "covers" these offsets (i.e. it starts at first node's
|
||||
% offset and ends at second node's offst) and weights are segments sizes adjusted
|
||||
% for locality (i.e. weight are always 0 for any local segment).
|
||||
case emqx_wdgraph:find_edge(Offset, End, Segs) of
|
||||
{WeightWas, _Label} when WeightWas =< Weight ->
|
||||
% NOTE
|
||||
% Discarding any edges with higher weight here. This is fine as long as we
|
||||
% optimize for locality.
|
||||
G;
|
||||
Segs;
|
||||
_ ->
|
||||
EdgesNext = lists:keystore(ToNode, 1, Edges, {ToNode, WeightIn, EdgeLabel}),
|
||||
tree_update({Node}, EdgesNext, G)
|
||||
emqx_wdgraph:insert_edge(Offset, End, Weight, Label, Segs)
|
||||
end.
|
||||
|
||||
get_edges(G, Node) ->
|
||||
tree_lookup({Node}, G, []).
|
||||
|
||||
get_cost(G, Node) ->
|
||||
tree_lookup({Node, cost}, G, inf).
|
||||
|
||||
get_label(G, Node) ->
|
||||
gb_trees:get({Node, label}, G).
|
||||
|
||||
set_cost(G1, Node, Cost, Label) ->
|
||||
G3 =
|
||||
case tree_lookup({Node, cost}, G1, inf) of
|
||||
CostWas when CostWas /= inf ->
|
||||
{true, G2} = gb_trees:take({queued, CostWas, Node}, G1),
|
||||
tree_update({queued, Cost, Node}, true, G2);
|
||||
inf ->
|
||||
tree_update({queued, Cost, Node}, true, G1)
|
||||
end,
|
||||
G4 = tree_update({Node, cost}, Cost, G3),
|
||||
G5 = tree_update({Node, label}, Label, G4),
|
||||
G5.
|
||||
|
||||
take_queued(G1) ->
|
||||
It = gb_trees:iterator_from({queued, 0, 0}, G1),
|
||||
case gb_trees:next(It) of
|
||||
{{queued, Cost, Node} = Index, true, _It} ->
|
||||
{Node, Cost, gb_trees:delete(Index, G1)};
|
||||
_ ->
|
||||
none
|
||||
end.
|
||||
|
||||
is_visited(G, Node) ->
|
||||
case tree_lookup({Node, cost}, G, inf) of
|
||||
inf ->
|
||||
false;
|
||||
Cost ->
|
||||
not tree_lookup({queued, Cost, Node}, G, false)
|
||||
end.
|
||||
|
||||
find_successor(G, Node) ->
|
||||
case gb_trees:next(gb_trees:iterator_from({Node}, G)) of
|
||||
{{Node}, _, It} ->
|
||||
case gb_trees:next(It) of
|
||||
{{Successor}, _, _} ->
|
||||
Successor;
|
||||
_ ->
|
||||
undefined
|
||||
end;
|
||||
{{Successor}, _, _} ->
|
||||
Successor;
|
||||
_ ->
|
||||
undefined
|
||||
end.
|
||||
|
||||
tree_lookup(Index, Tree, Default) ->
|
||||
case gb_trees:lookup(Index, Tree) of
|
||||
{value, V} ->
|
||||
V;
|
||||
none ->
|
||||
Default
|
||||
end.
|
||||
|
||||
tree_update(Index, Value, Tree) ->
|
||||
case gb_trees:take_any(Index, Tree) of
|
||||
{_, TreeNext} ->
|
||||
gb_trees:insert(Index, Value, TreeNext);
|
||||
error ->
|
||||
gb_trees:insert(Index, Value, Tree)
|
||||
coverage(Segs, Size) ->
|
||||
case emqx_wdgraph:find_shortest_path(0, Size, Segs) of
|
||||
Path when is_list(Path) ->
|
||||
Path;
|
||||
{false, LastOffset} ->
|
||||
% NOTE
|
||||
% This is far from being accurate, but needs no hairy specifics in the
|
||||
% `emqx_wdgraph` interface.
|
||||
{missing, {segment, LastOffset, Size}}
|
||||
end.
|
||||
|
||||
dominant(Coverage) ->
|
||||
|
@ -452,7 +339,8 @@ missing_coverage_test() ->
|
|||
],
|
||||
Asm = append_many(new(100), Segs),
|
||||
?assertEqual(
|
||||
{incomplete, {missing, {segment, 30, 40}}},
|
||||
% {incomplete, {missing, {segment, 30, 40}}} would be more accurate
|
||||
{incomplete, {missing, {segment, 30, 100}}},
|
||||
status(coverage, Asm)
|
||||
).
|
||||
|
||||
|
|
Loading…
Reference in New Issue