fix(ds): Optimize emqx_ds_bitmask_keymapper:make_filter
This optimization makes idle polling faster
This commit is contained in:
parent
8edbec5929
commit
698ba3f271
|
@ -16,7 +16,15 @@
|
|||
-module(emqx_persistent_session_ds_inflight).
|
||||
|
||||
%% API:
|
||||
-export([new/1, push/2, pop/1, n_buffered/2, n_inflight/1, inc_send_quota/1, receive_maximum/1]).
|
||||
-export([
|
||||
new/1,
|
||||
push/2,
|
||||
pop/1,
|
||||
n_buffered/2,
|
||||
n_inflight/1,
|
||||
inc_send_quota/1,
|
||||
receive_maximum/1
|
||||
]).
|
||||
|
||||
%% internal exports:
|
||||
-export([]).
|
||||
|
@ -107,7 +115,7 @@ pop(Rec0) ->
|
|||
undefined
|
||||
end.
|
||||
|
||||
-spec n_buffered(0..2 | all, t()) -> non_neg_integer().
|
||||
-spec n_buffered(?QOS_0..?QOS_2 | all, t()) -> non_neg_integer().
|
||||
n_buffered(?QOS_0, #inflight{n_qos0 = NQos0}) ->
|
||||
NQos0;
|
||||
n_buffered(?QOS_1, #inflight{n_qos1 = NQos1}) ->
|
||||
|
|
|
@ -95,14 +95,14 @@
|
|||
%% Notes on the terminology:
|
||||
%%
|
||||
%% - "Coordinates" of the original message (usually topic and the
|
||||
%% timestamp, like in the example above) will be referred as the
|
||||
%% timestamp, like in the example above) will be referred to as the
|
||||
%% "vector".
|
||||
%%
|
||||
%% - The 1D scalar that these coordinates are transformed to will be
|
||||
%% referred as the "scalar".
|
||||
%% referred to as the "scalar".
|
||||
%%
|
||||
%% - Binary representation of the scalar if fixed size will be
|
||||
%% referred as the "key".
|
||||
%% - Fixed-size binary representation of the scalar is called the
|
||||
%% "key".
|
||||
%%
|
||||
%%================================================================================
|
||||
|
||||
|
@ -122,13 +122,15 @@
|
|||
bitsize/1
|
||||
]).
|
||||
|
||||
-export_type([vector/0, key/0, dimension/0, offset/0, bitsize/0, bitsource/0, keymapper/0]).
|
||||
-export_type([vector/0, scalar/0, key/0, dimension/0, offset/0, bitsize/0, bitsource/0, keymapper/0]).
|
||||
|
||||
-compile(
|
||||
{inline, [
|
||||
ones/1,
|
||||
extract/2,
|
||||
extract_inv/2
|
||||
extract_inv/2,
|
||||
constr_adjust_min/2,
|
||||
constr_adjust_max/2
|
||||
]}
|
||||
).
|
||||
|
||||
|
@ -150,12 +152,13 @@
|
|||
%% N-th coordinate of a vector:
|
||||
-type dimension() :: pos_integer().
|
||||
|
||||
-type key() :: binary().
|
||||
|
||||
-type offset() :: non_neg_integer().
|
||||
|
||||
-type bitsize() :: pos_integer().
|
||||
|
||||
%% The resulting 1D key:
|
||||
-type key() :: non_neg_integer().
|
||||
-type scalar() :: non_neg_integer().
|
||||
|
||||
-type bitsource() ::
|
||||
%% Consume `_Size` bits from timestamp starting at `_Offset`th
|
||||
|
@ -177,17 +180,21 @@
|
|||
|
||||
-type scan_action() :: #scan_action{}.
|
||||
|
||||
-type scanner() :: [[scan_action()]].
|
||||
-type scanner() :: [_CoorScanActions :: [scan_action()]].
|
||||
|
||||
-record(keymapper, {
|
||||
%% The original schema of the transformation:
|
||||
schema :: [bitsource()],
|
||||
%% Number of dimensions:
|
||||
vec_n_dim :: non_neg_integer(),
|
||||
%% List of operations used to map a vector to the scalar
|
||||
vec_scanner :: scanner(),
|
||||
%% Total size of the resulting key, in bits:
|
||||
key_size :: non_neg_integer(),
|
||||
%% Bit size of each dimenstion of the vector:
|
||||
dim_sizeof :: [non_neg_integer()]
|
||||
%% Bit size of each dimension of the vector:
|
||||
vec_coord_size :: [non_neg_integer()],
|
||||
%% Maximum offset of the part, for each the vector element:
|
||||
vec_max_offset :: [offset()]
|
||||
}).
|
||||
|
||||
-opaque keymapper() :: #keymapper{}.
|
||||
|
@ -211,6 +218,9 @@
|
|||
%% Note: order of bitsources is important. First element of the list
|
||||
%% is mapped to the _least_ significant bits of the key, and the last
|
||||
%% element becomes most significant bits.
|
||||
%%
|
||||
%% Warning: currently the algorithm doesn't handle situations when
|
||||
%% parts of a vector element are _reordered_ in the resulting scalar.
|
||||
-spec make_keymapper([bitsource()]) -> keymapper().
|
||||
make_keymapper(Bitsources) ->
|
||||
Arr0 = array:new([{fixed, false}, {default, {0, []}}]),
|
||||
|
@ -218,7 +228,9 @@ make_keymapper(Bitsources) ->
|
|||
fun(DestOffset, {Dim0, Offset, Size}, Acc) ->
|
||||
Dim = Dim0 - 1,
|
||||
Action = #scan_action{
|
||||
vec_coord_bitmask = ones(Size), vec_coord_offset = Offset, scalar_offset = DestOffset
|
||||
vec_coord_bitmask = ones(Size),
|
||||
vec_coord_offset = Offset,
|
||||
scalar_offset = DestOffset
|
||||
},
|
||||
{DimSizeof, Actions} = array:get(Dim, Acc),
|
||||
array:set(Dim, {DimSizeof + Size, [Action | Actions]}, Acc)
|
||||
|
@ -227,11 +239,15 @@ make_keymapper(Bitsources) ->
|
|||
Bitsources
|
||||
),
|
||||
{DimSizeof, Scanner} = lists:unzip(array:to_list(Arr)),
|
||||
NDim = length(Scanner),
|
||||
MaxOffsets = vec_max_offset(NDim, Bitsources),
|
||||
#keymapper{
|
||||
schema = Bitsources,
|
||||
vec_n_dim = length(Scanner),
|
||||
vec_scanner = Scanner,
|
||||
key_size = Size,
|
||||
dim_sizeof = DimSizeof
|
||||
vec_coord_size = DimSizeof,
|
||||
vec_max_offset = MaxOffsets
|
||||
}.
|
||||
|
||||
-spec bitsize(keymapper()) -> pos_integer().
|
||||
|
@ -241,7 +257,7 @@ bitsize(#keymapper{key_size = Size}) ->
|
|||
%% @doc Map N-dimensional vector to a scalar key.
|
||||
%%
|
||||
%% Note: this function is not injective.
|
||||
-spec vector_to_key(keymapper(), vector()) -> key().
|
||||
-spec vector_to_key(keymapper(), vector()) -> scalar().
|
||||
vector_to_key(#keymapper{vec_scanner = []}, []) ->
|
||||
0;
|
||||
vector_to_key(#keymapper{vec_scanner = [Actions | Scanner]}, [Coord | Vector]) ->
|
||||
|
@ -249,7 +265,7 @@ vector_to_key(#keymapper{vec_scanner = [Actions | Scanner]}, [Coord | Vector]) -
|
|||
|
||||
%% @doc Same as `vector_to_key', but it works with binaries, and outputs a binary.
|
||||
-spec bin_vector_to_key(keymapper(), [binary()]) -> binary().
|
||||
bin_vector_to_key(Keymapper = #keymapper{dim_sizeof = DimSizeof, key_size = Size}, Binaries) ->
|
||||
bin_vector_to_key(Keymapper = #keymapper{vec_coord_size = DimSizeof, key_size = Size}, Binaries) ->
|
||||
Vec = lists:zipwith(
|
||||
fun(Bin, SizeOf) ->
|
||||
<<Int:SizeOf>> = Bin,
|
||||
|
@ -265,7 +281,7 @@ bin_vector_to_key(Keymapper = #keymapper{dim_sizeof = DimSizeof, key_size = Size
|
|||
%%
|
||||
%% Note: `vector_to_key(key_to_vector(K)) = K' but
|
||||
%% `key_to_vector(vector_to_key(V)) = V' is not guaranteed.
|
||||
-spec key_to_vector(keymapper(), key()) -> vector().
|
||||
-spec key_to_vector(keymapper(), scalar()) -> vector().
|
||||
key_to_vector(#keymapper{vec_scanner = Scanner}, Key) ->
|
||||
lists:map(
|
||||
fun(Actions) ->
|
||||
|
@ -281,8 +297,8 @@ key_to_vector(#keymapper{vec_scanner = Scanner}, Key) ->
|
|||
).
|
||||
|
||||
%% @doc Same as `key_to_vector', but it works with binaries.
|
||||
-spec bin_key_to_vector(keymapper(), binary()) -> [binary()].
|
||||
bin_key_to_vector(Keymapper = #keymapper{dim_sizeof = DimSizeof, key_size = Size}, BinKey) ->
|
||||
-spec bin_key_to_vector(keymapper(), key()) -> [binary()].
|
||||
bin_key_to_vector(Keymapper = #keymapper{vec_coord_size = DimSizeof, key_size = Size}, BinKey) ->
|
||||
<<Key:Size>> = BinKey,
|
||||
Vector = key_to_vector(Keymapper, Key),
|
||||
lists:zipwith(
|
||||
|
@ -294,7 +310,7 @@ bin_key_to_vector(Keymapper = #keymapper{dim_sizeof = DimSizeof, key_size = Size
|
|||
).
|
||||
|
||||
%% @doc Transform a bitstring to a key
|
||||
-spec bitstring_to_key(keymapper(), bitstring()) -> key().
|
||||
-spec bitstring_to_key(keymapper(), bitstring()) -> scalar().
|
||||
bitstring_to_key(#keymapper{key_size = Size}, Bin) ->
|
||||
case Bin of
|
||||
<<Key:Size>> ->
|
||||
|
@ -304,58 +320,21 @@ bitstring_to_key(#keymapper{key_size = Size}, Bin) ->
|
|||
end.
|
||||
|
||||
%% @doc Transform key to a fixed-size bistring
|
||||
-spec key_to_bitstring(keymapper(), key()) -> bitstring().
|
||||
-spec key_to_bitstring(keymapper(), scalar()) -> bitstring().
|
||||
key_to_bitstring(#keymapper{key_size = Size}, Key) ->
|
||||
<<Key:Size>>.
|
||||
|
||||
%% @doc Create a filter object that facilitates range scans.
|
||||
-spec make_filter(keymapper(), [coord_range()]) -> filter().
|
||||
make_filter(
|
||||
KeyMapper = #keymapper{schema = Schema, dim_sizeof = DimSizeof, key_size = TotalSize}, Filter0
|
||||
KeyMapper = #keymapper{schema = Schema, key_size = TotalSize},
|
||||
Filter0
|
||||
) ->
|
||||
NDim = length(DimSizeof),
|
||||
%% Transform "symbolic" constraints to ranges:
|
||||
Filter1 = constraints_to_ranges(KeyMapper, Filter0),
|
||||
{Bitmask, Bitfilter} = make_bitfilter(KeyMapper, Filter1),
|
||||
%% Calculate maximum source offset as per bitsource specification:
|
||||
MaxOffset = lists:foldl(
|
||||
fun({Dim, Offset, _Size}, Acc) ->
|
||||
maps:update_with(
|
||||
Dim, fun(OldVal) -> max(OldVal, Offset) end, maps:merge(#{Dim => 0}, Acc)
|
||||
)
|
||||
end,
|
||||
#{},
|
||||
Schema
|
||||
),
|
||||
%% Adjust minimum and maximum values for each interval like this:
|
||||
%%
|
||||
%% Min: 110100|101011 -> 110100|00000
|
||||
%% Max: 110101|001011 -> 110101|11111
|
||||
%% ^
|
||||
%% |
|
||||
%% max offset
|
||||
%%
|
||||
%% This is needed so when we increment the vector, we always scan
|
||||
%% the full range of least significant bits.
|
||||
Filter2 = lists:zipwith(
|
||||
fun
|
||||
({Val, Val}, _Dim) ->
|
||||
{Val, Val};
|
||||
({Min0, Max0}, Dim) ->
|
||||
Offset = maps:get(Dim, MaxOffset, 0),
|
||||
%% Set least significant bits of Min to 0:
|
||||
Min = (Min0 bsr Offset) bsl Offset,
|
||||
%% Set least significant bits of Max to 1:
|
||||
Max = Max0 bor ones(Offset),
|
||||
{Min, Max}
|
||||
end,
|
||||
Filter1,
|
||||
lists:seq(1, NDim)
|
||||
),
|
||||
%% Project the vector into "bitsource coordinate system":
|
||||
{Intervals, Bitmask, Bitfilter} = transform_constraints(KeyMapper, Filter0),
|
||||
%% Project the intervals into the "bitsource coordinate system":
|
||||
{_, Filter} = fold_bitsources(
|
||||
fun(DstOffset, {Dim, SrcOffset, Size}, Acc) ->
|
||||
{Min0, Max0} = lists:nth(Dim, Filter2),
|
||||
{Min0, Max0} = element(Dim, Intervals),
|
||||
Min = (Min0 bsr SrcOffset) band ones(Size),
|
||||
Max = (Max0 bsr SrcOffset) band ones(Size),
|
||||
Action = #filter_scan_action{
|
||||
|
@ -369,7 +348,7 @@ make_filter(
|
|||
[],
|
||||
Schema
|
||||
),
|
||||
Ranges = array:from_list(lists:reverse(Filter)),
|
||||
Ranges = list_to_tuple(lists:reverse(Filter)),
|
||||
%% Compute estimated upper and lower bounds of a _continous_
|
||||
%% interval where all keys lie:
|
||||
case Filter of
|
||||
|
@ -377,6 +356,7 @@ make_filter(
|
|||
RangeMin = 0,
|
||||
RangeMax = 0;
|
||||
[#filter_scan_action{offset = MSBOffset, min = MSBMin, max = MSBMax} | _] ->
|
||||
%% Hack: currently this function only considers the first bitsource:
|
||||
RangeMin = MSBMin bsl MSBOffset,
|
||||
RangeMax = MSBMax bsl MSBOffset bor ones(MSBOffset)
|
||||
end,
|
||||
|
@ -400,7 +380,7 @@ make_filter(
|
|||
%% If these conditions cannot be satisfied, return `overflow'.
|
||||
%%
|
||||
%% Corollary: `K' may be equal to `K0'.
|
||||
-spec ratchet(filter(), key()) -> key() | overflow.
|
||||
-spec ratchet(filter(), scalar()) -> scalar() | overflow.
|
||||
ratchet(#filter{bitsource_ranges = Ranges, range_max = Max}, Key) when Key =< Max ->
|
||||
%% This function works in two steps: first, it finds the position
|
||||
%% of bitsource ("pivot point") corresponding to the part of the
|
||||
|
@ -419,7 +399,7 @@ ratchet(#filter{bitsource_ranges = Ranges, range_max = Max}, Key) when Key =< Ma
|
|||
%% point.
|
||||
%%
|
||||
%% 3. The rest of key stays the same
|
||||
NDim = array:size(Ranges),
|
||||
NDim = tuple_size(Ranges),
|
||||
case ratchet_scan(Ranges, NDim, Key, 0, {_Pivot0 = -1, _Increment0 = 0}, _Carry = 0) of
|
||||
overflow ->
|
||||
overflow;
|
||||
|
@ -482,7 +462,9 @@ ratchet_scan(_Ranges, NDim, _Key, NDim, _Pivot, 1) ->
|
|||
%% We've reached the end, but key is still not large enough:
|
||||
overflow;
|
||||
ratchet_scan(Ranges, NDim, Key, I, Pivot0, Carry) ->
|
||||
#filter_scan_action{offset = Offset, size = Size, min = Min, max = Max} = array:get(I, Ranges),
|
||||
#filter_scan_action{offset = Offset, size = Size, min = Min, max = Max} = element(
|
||||
I + 1, Ranges
|
||||
),
|
||||
%% Extract I-th element of the vector from the original key:
|
||||
Elem = ((Key bsr Offset) band ones(Size)) + Carry,
|
||||
if
|
||||
|
@ -516,7 +498,7 @@ ratchet_scan(Ranges, NDim, Key, I, Pivot0, Carry) ->
|
|||
ratchet_do(_Ranges, _Key, I, _Pivot, _Increment) when I < 0 ->
|
||||
0;
|
||||
ratchet_do(Ranges, Key, I, Pivot, Increment) ->
|
||||
#filter_scan_action{offset = Offset, size = Size, min = Min} = array:get(I, Ranges),
|
||||
#filter_scan_action{offset = Offset, size = Size, min = Min} = element(I + 1, Ranges),
|
||||
Mask = ones(Offset + Size) bxor ones(Offset),
|
||||
Elem =
|
||||
if
|
||||
|
@ -533,46 +515,122 @@ ratchet_do(Ranges, Key, I, Pivot, Increment) ->
|
|||
%% ),
|
||||
Elem bor ratchet_do(Ranges, Key, I - 1, Pivot, Increment).
|
||||
|
||||
-spec make_bitfilter(keymapper(), [{non_neg_integer(), non_neg_integer()}]) ->
|
||||
{non_neg_integer(), non_neg_integer()}.
|
||||
make_bitfilter(Keymapper = #keymapper{dim_sizeof = DimSizeof}, Ranges) ->
|
||||
L = lists:zipwith(
|
||||
fun
|
||||
({N, N}, Bits) ->
|
||||
%% For strict equality we can employ bitmask:
|
||||
{ones(Bits), N};
|
||||
(_, _) ->
|
||||
{0, 0}
|
||||
%% Calculate maximum offset for each dimension of the vector.
|
||||
%%
|
||||
%% These offsets are cached because during the creation of the filter
|
||||
%% we need to adjust the search interval for the presence of holes.
|
||||
-spec vec_max_offset(non_neg_integer(), [bitsource()]) -> array:array(offset()).
|
||||
vec_max_offset(NDim, Bitsources) ->
|
||||
Arr0 = array:new([{size, NDim}, {default, 0}, {fixed, true}]),
|
||||
Arr = lists:foldl(
|
||||
fun({Dimension, Offset, _Size}, Acc) ->
|
||||
OldVal = array:get(Dimension - 1, Acc),
|
||||
array:set(Dimension - 1, max(Offset, OldVal), Acc)
|
||||
end,
|
||||
Ranges,
|
||||
DimSizeof
|
||||
Arr0,
|
||||
Bitsources
|
||||
),
|
||||
{Bitmask, Bitfilter} = lists:unzip(L),
|
||||
{vector_to_key(Keymapper, Bitmask), vector_to_key(Keymapper, Bitfilter)}.
|
||||
array:to_list(Arr).
|
||||
|
||||
%% Transform constraints into a list of closed intervals that the
|
||||
%% vector elements should lie in.
|
||||
constraints_to_ranges(#keymapper{dim_sizeof = DimSizeof}, Filter) ->
|
||||
lists:zipwith(
|
||||
fun(Constraint, Bitsize) ->
|
||||
Max = ones(Bitsize),
|
||||
case Constraint of
|
||||
any ->
|
||||
{0, Max};
|
||||
{'=', infinity} ->
|
||||
{Max, Max};
|
||||
{'=', Val} when Val =< Max ->
|
||||
{Val, Val};
|
||||
{'>=', Val} when Val =< Max ->
|
||||
{Val, Max};
|
||||
{A, '..', B} when A =< Max, B =< Max ->
|
||||
{A, B}
|
||||
end
|
||||
end,
|
||||
Filter,
|
||||
DimSizeof
|
||||
transform_constraints(
|
||||
#keymapper{
|
||||
vec_scanner = Scanner, vec_coord_size = DimSizeL, vec_max_offset = MaxOffsetL
|
||||
},
|
||||
FilterL
|
||||
) ->
|
||||
do_transform_constraints(
|
||||
Scanner, DimSizeL, MaxOffsetL, FilterL, [], 0, 0
|
||||
).
|
||||
|
||||
do_transform_constraints([], [], [], [], RangeAcc, BitmaskAcc, BitfilterAcc) ->
|
||||
{
|
||||
list_to_tuple(lists:reverse(RangeAcc)),
|
||||
BitmaskAcc,
|
||||
BitfilterAcc
|
||||
};
|
||||
do_transform_constraints(
|
||||
[Actions | Scanner],
|
||||
[DimSize | DimSizeL],
|
||||
[MaxOffset | MaxOffsetL],
|
||||
[Filter | FilterL],
|
||||
RangeAcc,
|
||||
BitmaskAcc,
|
||||
BitfilterAcc
|
||||
) ->
|
||||
%% This function does four things:
|
||||
%%
|
||||
%% 1. It transforms the list of "symbolic inequations" to a list
|
||||
%% of closed intervals for each vector element.
|
||||
%%
|
||||
%% 2. In addition, this function adjusts minimum and maximum
|
||||
%% values for each interval like this:
|
||||
%%
|
||||
%% Min: 110100|101011 -> 110100|00000
|
||||
%% Max: 110101|001011 -> 110101|11111
|
||||
%% ^
|
||||
%% |
|
||||
%% max offset
|
||||
%%
|
||||
%% This is needed so when we increment the vector, we always scan
|
||||
%% the full range of the least significant bits.
|
||||
%%
|
||||
%% This leads to some out-of-range elements being exposed at the
|
||||
%% beginning and the end of the range, so they should be filtered
|
||||
%% out during post-processing.
|
||||
%%
|
||||
%% 3. It calculates the bitmask that can be used together with the
|
||||
%% bitfilter (see 4) to quickly filter out keys that don't satisfy
|
||||
%% the strict equations, using `Key && Bitmask != Bitfilter' check
|
||||
%%
|
||||
%% 4. It calculates the bitfilter
|
||||
Max = ones(DimSize),
|
||||
case Filter of
|
||||
any ->
|
||||
Range = {0, Max},
|
||||
Bitmask = 0,
|
||||
Bitfilter = 0;
|
||||
{'=', infinity} ->
|
||||
Range = {Max, Max},
|
||||
Bitmask = Max,
|
||||
Bitfilter = Max;
|
||||
{'=', Val} when Val =< Max ->
|
||||
Range = {Val, Val},
|
||||
Bitmask = Max,
|
||||
Bitfilter = Val;
|
||||
{'>=', Val} when Val =< Max ->
|
||||
Range = {constr_adjust_min(MaxOffset, Val), constr_adjust_max(MaxOffset, Max)},
|
||||
Bitmask = 0,
|
||||
Bitfilter = 0;
|
||||
{A, '..', B} when A =< Max, B =< Max ->
|
||||
Range = {constr_adjust_min(MaxOffset, A), constr_adjust_max(MaxOffset, B)},
|
||||
Bitmask = 0,
|
||||
Bitfilter = 0
|
||||
end,
|
||||
do_transform_constraints(
|
||||
Scanner,
|
||||
DimSizeL,
|
||||
MaxOffsetL,
|
||||
FilterL,
|
||||
[Range | RangeAcc],
|
||||
vec_elem_to_key(Bitmask, Actions, BitmaskAcc),
|
||||
vec_elem_to_key(Bitfilter, Actions, BitfilterAcc)
|
||||
).
|
||||
|
||||
constr_adjust_min(MaxOffset, Num) ->
|
||||
(Num bsr MaxOffset) bsl MaxOffset.
|
||||
|
||||
constr_adjust_max(MaxOffset, Num) ->
|
||||
Num bor ones(MaxOffset).
|
||||
|
||||
-spec vec_elem_to_key(non_neg_integer(), [scan_action()], Acc) -> Acc when
|
||||
Acc :: non_neg_integer().
|
||||
vec_elem_to_key(_Elem, [], Acc) ->
|
||||
Acc;
|
||||
vec_elem_to_key(Elem, [Action | Actions], Acc) ->
|
||||
vec_elem_to_key(Elem, Actions, Acc bor extract(Elem, Action)).
|
||||
|
||||
-spec fold_bitsources(fun((_DstOffset :: non_neg_integer(), bitsource(), Acc) -> Acc), Acc, [
|
||||
bitsource()
|
||||
]) -> {bitsize(), Acc}.
|
||||
|
@ -595,7 +653,9 @@ do_vector_to_key([Action | Actions], Scanner, Coord, Vector, Acc0) ->
|
|||
do_vector_to_key(Actions, Scanner, Coord, Vector, Acc).
|
||||
|
||||
-spec extract(_Source :: coord(), scan_action()) -> integer().
|
||||
extract(Src, #scan_action{vec_coord_bitmask = SrcBitmask, vec_coord_offset = SrcOffset, scalar_offset = DstOffset}) ->
|
||||
extract(Src, #scan_action{
|
||||
vec_coord_bitmask = SrcBitmask, vec_coord_offset = SrcOffset, scalar_offset = DstOffset
|
||||
}) ->
|
||||
((Src bsr SrcOffset) band SrcBitmask) bsl DstOffset.
|
||||
|
||||
%% extract^-1
|
||||
|
@ -619,9 +679,11 @@ make_keymapper0_test() ->
|
|||
?assertEqual(
|
||||
#keymapper{
|
||||
schema = Schema,
|
||||
vec_n_dim = 0,
|
||||
vec_scanner = [],
|
||||
key_size = 0,
|
||||
dim_sizeof = []
|
||||
vec_coord_size = [],
|
||||
vec_max_offset = []
|
||||
},
|
||||
make_keymapper(Schema)
|
||||
).
|
||||
|
@ -631,12 +693,14 @@ make_keymapper1_test() ->
|
|||
?assertEqual(
|
||||
#keymapper{
|
||||
schema = Schema,
|
||||
vec_n_dim = 2,
|
||||
vec_scanner = [
|
||||
[#scan_action{vec_coord_bitmask = 2#111, vec_coord_offset = 0, scalar_offset = 0}],
|
||||
[#scan_action{vec_coord_bitmask = 2#11111, vec_coord_offset = 0, scalar_offset = 3}]
|
||||
],
|
||||
key_size = 8,
|
||||
dim_sizeof = [3, 5]
|
||||
vec_coord_size = [3, 5],
|
||||
vec_max_offset = [0, 0]
|
||||
},
|
||||
make_keymapper(Schema)
|
||||
).
|
||||
|
@ -646,15 +710,19 @@ make_keymapper2_test() ->
|
|||
?assertEqual(
|
||||
#keymapper{
|
||||
schema = Schema,
|
||||
vec_n_dim = 2,
|
||||
vec_scanner = [
|
||||
[
|
||||
#scan_action{vec_coord_bitmask = 2#11111, vec_coord_offset = 3, scalar_offset = 8},
|
||||
#scan_action{
|
||||
vec_coord_bitmask = 2#11111, vec_coord_offset = 3, scalar_offset = 8
|
||||
},
|
||||
#scan_action{vec_coord_bitmask = 2#111, vec_coord_offset = 0, scalar_offset = 0}
|
||||
],
|
||||
[#scan_action{vec_coord_bitmask = 2#11111, vec_coord_offset = 0, scalar_offset = 3}]
|
||||
],
|
||||
key_size = 13,
|
||||
dim_sizeof = [8, 5]
|
||||
vec_coord_size = [8, 5],
|
||||
vec_max_offset = [3, 0]
|
||||
},
|
||||
make_keymapper(Schema)
|
||||
).
|
||||
|
@ -757,17 +825,17 @@ ratchet1_test() ->
|
|||
Bitsources = [{1, 0, 8}],
|
||||
M = make_keymapper(Bitsources),
|
||||
F = make_filter(M, [any]),
|
||||
#filter{bitsource_ranges = Rarr} = F,
|
||||
#filter{bitsource_ranges = Ranges} = F,
|
||||
?assertMatch(
|
||||
[
|
||||
{
|
||||
#filter_scan_action{
|
||||
offset = 0,
|
||||
size = 8,
|
||||
min = 0,
|
||||
max = 16#ff
|
||||
}
|
||||
],
|
||||
array:to_list(Rarr)
|
||||
},
|
||||
Ranges
|
||||
),
|
||||
?assertEqual(0, ratchet(F, 0)),
|
||||
?assertEqual(16#fa, ratchet(F, 16#fa)),
|
||||
|
@ -847,9 +915,9 @@ ratchet_prop(#filter{bitfilter = Bitfilter, bitmask = Bitmask, size = Size}, Key
|
|||
end,
|
||||
CheckGaps(Key0 + 1).
|
||||
|
||||
mkbmask(Keymapper, Filter0) ->
|
||||
Filter = constraints_to_ranges(Keymapper, Filter0),
|
||||
make_bitfilter(Keymapper, Filter).
|
||||
mkbmask(Keymapper, Filter) ->
|
||||
{_Ranges, Bitmask, Bitfilter} = transform_constraints(Keymapper, Filter),
|
||||
{Bitmask, Bitfilter}.
|
||||
|
||||
key2vec(Schema, Vector) ->
|
||||
Keymapper = make_keymapper(Schema),
|
||||
|
|
Loading…
Reference in New Issue