perf(ft-asm): express coverage through shortest path on graph
Coverage becomes the shortest path problem on graph where nodes are offsets and edges are nodes' segments. Implement a simple Dijkstra algorithm to find one.
This commit is contained in:
parent
0c84fc28b0
commit
130601376a
|
@ -20,6 +20,7 @@
|
|||
|
||||
-export([to_list/1]).
|
||||
-export([from_list/1]).
|
||||
-export([define/2]).
|
||||
-export([apply/2]).
|
||||
|
||||
-spec to_list(maybe(A)) -> [A].
|
||||
|
@ -34,6 +35,12 @@ from_list([]) ->
|
|||
from_list([Term]) ->
|
||||
Term.
|
||||
|
||||
-spec define(maybe(A), B) -> A | B.
|
||||
define(undefined, Term) ->
|
||||
Term;
|
||||
define(Term, _) ->
|
||||
Term.
|
||||
|
||||
%% @doc Apply a function to a maybe argument.
|
||||
-spec apply(fun((maybe(A)) -> maybe(A)), maybe(A)) ->
|
||||
maybe(A).
|
||||
|
@ -60,6 +67,13 @@ from_list_test_() ->
|
|||
?_assertError(_, from_list([1, 2, 3]))
|
||||
].
|
||||
|
||||
define_test_() ->
|
||||
[
|
||||
?_assertEqual(42, define(42, undefined)),
|
||||
?_assertEqual(<<"default">>, define(undefined, <<"default">>)),
|
||||
?_assertEqual(undefined, define(undefined, undefined))
|
||||
].
|
||||
|
||||
apply_test_() ->
|
||||
[
|
||||
?_assertEqual(<<"42">>, ?MODULE:apply(fun erlang:integer_to_binary/1, 42)),
|
||||
|
|
|
@ -123,7 +123,7 @@ status(meta, []) ->
|
|||
status(meta, [_M1, _M2 | _] = Metas) ->
|
||||
{error, {inconsistent, [Frag#{node => Node} || {_, {Node, Frag}} <- Metas]}};
|
||||
status(coverage, #asm{segs = Segments, size = Size}) ->
|
||||
case coverage(squash(Segments), Size) of
|
||||
case coverage(Segments, Size) of
|
||||
Coverage when is_list(Coverage) ->
|
||||
{complete, Coverage, #{
|
||||
dominant => dominant(Coverage)
|
||||
|
@ -145,8 +145,7 @@ append_segmentinfo(Asm, Node, Fragment = #{fragment := {segment, Info}}) ->
|
|||
Offset = maps:get(offset, Info),
|
||||
Size = maps:get(size, Info),
|
||||
End = Offset + Size,
|
||||
Index = {Offset, locality(Node), -End, Node},
|
||||
Segs = insert(Asm#asm.segs, Index, [Fragment]),
|
||||
Segs = add_edge(Asm#asm.segs, Offset, End, locality(Node) * Size, {Node, Fragment}),
|
||||
Asm#asm{
|
||||
% TODO
|
||||
% In theory it's possible to have two segments with same offset + size on
|
||||
|
@ -155,69 +154,143 @@ append_segmentinfo(Asm, Node, Fragment = #{fragment := {segment, Info}}) ->
|
|||
segs = Segs
|
||||
}.
|
||||
|
||||
squash(Segs) ->
|
||||
% NOTE
|
||||
% Here we're "compressing" information about every known segment by adjoining
|
||||
% nearby segments on the same node into "runs".
|
||||
squash(Segs, gb_trees:next(gb_trees:iterator(Segs))).
|
||||
|
||||
squash(Segs, {Index = {Offset, Locality, MEnd, _}, Fragments, It}) ->
|
||||
SegsSquashed = squash_run(gb_trees:delete(Index, Segs), Index, Fragments, It),
|
||||
ItNext = gb_trees:iterator_from({Offset, Locality, MEnd + 1, 0}, SegsSquashed),
|
||||
squash(SegsSquashed, gb_trees:next(ItNext));
|
||||
squash(Segs, none) ->
|
||||
Segs.
|
||||
|
||||
squash_run(Segs, {Offset, Locality, MEnd, Node} = Index, Fragments, It) ->
|
||||
Next = gb_trees:next(It),
|
||||
case Next of
|
||||
{{OffsetNext, _, MEndNext, Node} = IndexNext, FragmentsNext, ItNext} when
|
||||
OffsetNext == -MEnd
|
||||
->
|
||||
SegsNext = gb_trees:delete(IndexNext, Segs),
|
||||
IndexSquashed = {Offset, Locality, MEndNext, Node},
|
||||
squash_run(SegsNext, IndexSquashed, Fragments ++ FragmentsNext, ItNext);
|
||||
{{OffsetNext, _, _, _}, _, ItNext} when OffsetNext =< -MEnd ->
|
||||
squash_run(Segs, Index, Fragments, ItNext);
|
||||
_ ->
|
||||
insert(Segs, Index, Fragments)
|
||||
end.
|
||||
|
||||
insert(Segs, Index, Fragments) ->
|
||||
try
|
||||
gb_trees:insert(Index, Fragments, Segs)
|
||||
catch
|
||||
error:{key_exists, _} -> Segs
|
||||
end.
|
||||
|
||||
coverage(Segs, Size) ->
|
||||
coverage(gb_trees:next(gb_trees:iterator(Segs)), 0, Size).
|
||||
find_shortest_path(Segs, 0, Size).
|
||||
|
||||
coverage({{Offset, _, _, _}, _Fragments, It}, Cursor, Sz) when Offset < Cursor ->
|
||||
coverage(gb_trees:next(It), Cursor, Sz);
|
||||
coverage({{Cursor, _Locality, MEnd, Node}, Fragments, It}, Cursor, Sz) ->
|
||||
find_shortest_path(G1, From, To) ->
|
||||
% NOTE
|
||||
% We consider only whole fragments here, so for example from the point of view of
|
||||
% this algo `[{Offset1 = 0, Size1 = 15}, {Offset2 = 10, Size2 = 10}]` has no
|
||||
% coverage.
|
||||
ItNext = gb_trees:next(It),
|
||||
case coverage(ItNext, -MEnd, Sz) of
|
||||
Coverage when is_list(Coverage) ->
|
||||
[{Node, Frag} || Frag <- Fragments] ++ Coverage;
|
||||
Missing = {missing, _} ->
|
||||
case coverage(ItNext, Cursor, Sz) of
|
||||
CoverageAlt when is_list(CoverageAlt) ->
|
||||
CoverageAlt;
|
||||
{missing, _} ->
|
||||
Missing
|
||||
% This is a Dijkstra shortest path algorithm implemented on top of `gb_trees`.
|
||||
% It is one-way right now, for simplicity sake.
|
||||
G2 = set_cost(G1, From, 0, []),
|
||||
case find_shortest_path(G2, From, 0, To) of
|
||||
{found, G3} ->
|
||||
construct_path(G3, From, To, []);
|
||||
{error, Last} ->
|
||||
% NOTE: this is actually just an estimation of what is missing.
|
||||
{missing, {segment, Last, emqx_maybe:define(find_successor(G2, Last), To)}}
|
||||
end.
|
||||
|
||||
find_shortest_path(G1, Node, Cost, Target) ->
|
||||
Edges = get_edges(G1, Node),
|
||||
G2 = update_neighbours(G1, Node, Cost, Edges),
|
||||
case take_queued(G2) of
|
||||
{Target, _NextCost, G3} ->
|
||||
{found, G3};
|
||||
{Next, NextCost, G3} ->
|
||||
find_shortest_path(G3, Next, NextCost, Target);
|
||||
none ->
|
||||
{error, Node}
|
||||
end.
|
||||
|
||||
construct_path(_G, From, From, Acc) ->
|
||||
Acc;
|
||||
construct_path(G, From, To, Acc) ->
|
||||
{Prev, Label} = get_label(G, To),
|
||||
construct_path(G, From, Prev, [Label | Acc]).
|
||||
|
||||
update_neighbours(G1, Node, NodeCost, Edges) ->
|
||||
lists:foldl(
|
||||
fun({Neighbour, Weight, Label}, GAcc) ->
|
||||
case is_visited(GAcc, Neighbour) of
|
||||
false ->
|
||||
NeighCost = NodeCost + Weight,
|
||||
CurrentCost = get_cost(GAcc, Neighbour),
|
||||
case NeighCost < CurrentCost of
|
||||
true ->
|
||||
set_cost(GAcc, Neighbour, NeighCost, {Node, Label});
|
||||
false ->
|
||||
GAcc
|
||||
end;
|
||||
true ->
|
||||
GAcc
|
||||
end
|
||||
end;
|
||||
coverage({{Offset, _, _MEnd, _}, _Fragments, _It}, Cursor, _Sz) when Offset > Cursor ->
|
||||
{missing, {segment, Cursor, Offset}};
|
||||
coverage(none, Cursor, Sz) when Cursor < Sz ->
|
||||
{missing, {segment, Cursor, Sz}};
|
||||
coverage(none, Cursor, Cursor) ->
|
||||
[].
|
||||
end,
|
||||
G1,
|
||||
Edges
|
||||
).
|
||||
|
||||
add_edge(G, Node, ToNode, WeightIn, EdgeLabel) ->
|
||||
Edges = tree_lookup({Node}, G, []),
|
||||
case lists:keyfind(ToNode, 1, Edges) of
|
||||
{ToNode, Weight, _} when Weight =< WeightIn ->
|
||||
% NOTE
|
||||
% Discarding any edges with higher weight here. This is fine as long as we
|
||||
% optimize for locality.
|
||||
G;
|
||||
_ ->
|
||||
EdgesNext = lists:keystore(ToNode, 1, Edges, {ToNode, WeightIn, EdgeLabel}),
|
||||
tree_update({Node}, EdgesNext, G)
|
||||
end.
|
||||
|
||||
get_edges(G, Node) ->
|
||||
tree_lookup({Node}, G, []).
|
||||
|
||||
get_cost(G, Node) ->
|
||||
tree_lookup({Node, cost}, G, inf).
|
||||
|
||||
get_label(G, Node) ->
|
||||
gb_trees:get({Node, label}, G).
|
||||
|
||||
set_cost(G1, Node, Cost, Label) ->
|
||||
G3 =
|
||||
case tree_lookup({Node, cost}, G1, inf) of
|
||||
CostWas when CostWas /= inf ->
|
||||
{true, G2} = gb_trees:take({queued, CostWas, Node}, G1),
|
||||
tree_update({queued, Cost, Node}, true, G2);
|
||||
inf ->
|
||||
tree_update({queued, Cost, Node}, true, G1)
|
||||
end,
|
||||
G4 = tree_update({Node, cost}, Cost, G3),
|
||||
G5 = tree_update({Node, label}, Label, G4),
|
||||
G5.
|
||||
|
||||
take_queued(G1) ->
|
||||
It = gb_trees:iterator_from({queued, 0, 0}, G1),
|
||||
case gb_trees:next(It) of
|
||||
{{queued, Cost, Node} = Index, true, _It} ->
|
||||
{Node, Cost, gb_trees:delete(Index, G1)};
|
||||
_ ->
|
||||
none
|
||||
end.
|
||||
|
||||
is_visited(G, Node) ->
|
||||
case tree_lookup({Node, cost}, G, inf) of
|
||||
inf ->
|
||||
false;
|
||||
Cost ->
|
||||
not tree_lookup({queued, Cost, Node}, G, false)
|
||||
end.
|
||||
|
||||
find_successor(G, Node) ->
|
||||
case gb_trees:next(gb_trees:iterator_from({Node}, G)) of
|
||||
{{Node}, _, It} ->
|
||||
case gb_trees:next(It) of
|
||||
{{Successor}, _, _} ->
|
||||
Successor;
|
||||
_ ->
|
||||
undefined
|
||||
end;
|
||||
{{Successor}, _, _} ->
|
||||
Successor;
|
||||
_ ->
|
||||
undefined
|
||||
end.
|
||||
|
||||
tree_lookup(Index, Tree, Default) ->
|
||||
case gb_trees:lookup(Index, Tree) of
|
||||
{value, V} ->
|
||||
V;
|
||||
none ->
|
||||
Default
|
||||
end.
|
||||
|
||||
tree_update(Index, Value, Tree) ->
|
||||
case gb_trees:take_any(Index, Tree) of
|
||||
{_, TreeNext} ->
|
||||
gb_trees:insert(Index, Value, TreeNext);
|
||||
error ->
|
||||
gb_trees:insert(Index, Value, Tree)
|
||||
end.
|
||||
|
||||
dominant(Coverage) ->
|
||||
% TODO: needs improvement, better defined _dominance_, maybe some score
|
||||
|
@ -379,8 +452,7 @@ missing_coverage_test() ->
|
|||
],
|
||||
Asm = append_many(new(100), Segs),
|
||||
?assertEqual(
|
||||
% {incomplete, {missing, {segment, 30, 40}}}, ???
|
||||
{incomplete, {missing, {segment, 20, 40}}},
|
||||
{incomplete, {missing, {segment, 30, 40}}},
|
||||
status(coverage, Asm)
|
||||
).
|
||||
|
||||
|
@ -407,7 +479,7 @@ missing_coverage_with_redudancy_test() ->
|
|||
Asm = append_many(new(100), Segs),
|
||||
?assertEqual(
|
||||
% {incomplete, {missing, {segment, 50, 60}}}, ???
|
||||
{incomplete, {missing, {segment, 20, 40}}},
|
||||
{incomplete, {missing, {segment, 60, 100}}},
|
||||
status(coverage, Asm)
|
||||
).
|
||||
|
||||
|
|
Loading…
Reference in New Issue