laser_weeding/extend_sam/__init__.py

128 lines
4.3 KiB
Python

# copyright ziqi-jin
import torch
from .extend_sam import BaseExtendSam, SemanticSam
from .runner import BaseRunner, SemRunner
# from .optimizer import BaseOptimizer
from .scheduler import WarmupMultiStepLR
from .utils import get_opt_pamams
AVAI_SCH = ["single_step", "multi_step", "warmup_multi_step", "cosine", "linear"]
AVAI_MODEL = {'base_sam': BaseExtendSam, 'sem_sam': SemanticSam}
# AVAI_OPT = {'base_opt': BaseOptimizer, 'sgd': torch.optim.SGD, 'adam': torch.optim.Adam}
AVAI_OPT = {'sgd': torch.optim.SGD, 'adam': torch.optim.Adam, 'adamw': torch.optim.AdamW}
AVAI_RUNNER = {'base_runner': BaseRunner, 'sem_runner': SemRunner}
def get_model(model_name, **kwargs):
if model_name not in AVAI_MODEL:
print('not supported model name, please implement it first.')
return AVAI_MODEL[model_name](**kwargs).cuda()
def get_optimizer(opt_name, **kwargs):
if opt_name not in AVAI_OPT:
print('not supported optimizer name, please implement it first.')
return AVAI_OPT[opt_name](**{k: v for k, v in kwargs.items() if v is not None})
def get_runner(runner_name):
if runner_name not in AVAI_RUNNER:
print('not supported runner name, please implement it first.')
return AVAI_RUNNER[runner_name]
def get_scheduler(
optimizer,
lr_scheduler="single_step",
stepsize=1,
gamma=0.1,
warmup_factor=0.01,
warmup_steps=10,
max_epoch=1,
n_epochs_init=50,
n_epochs_decay=50,
):
"""A function wrapper for building a learning rate scheduler.
Args:
optimizer (Optimizer): an Optimizer.
lr_scheduler (str, optional): learning rate scheduler method. Default is
single_step.
stepsize (int or list, optional): step size to decay learning rate.
When ``lr_scheduler`` is "single_step", ``stepsize`` should be an integer.
When ``lr_scheduler`` is "multi_step", ``stepsize`` is a list. Default is 1.
gamma (float, optional): decay rate. Default is 0.1.
max_epoch (int, optional): maximum epoch (for cosine annealing). Default is 1.
Examples::
>>> # Decay learning rate by every 20 epochs.
>>> scheduler = get_scheduler(
>>> optimizer, lr_scheduler='single_step', stepsize=20
>>> )
>>> # Decay learning rate at 30, 50 and 55 epochs.
>>> scheduler = get_scheduler(
>>> optimizer, lr_scheduler='multi_step', stepsize=[30, 50, 55]
>>> )
"""
if lr_scheduler not in AVAI_SCH:
raise ValueError(
"Unsupported scheduler: {}. Must be one of {}".format(
lr_scheduler, AVAI_SCH
)
)
if lr_scheduler == "single_step":
if isinstance(stepsize, list):
stepsize = stepsize[-1]
if not isinstance(stepsize, int):
raise TypeError(
"For single_step lr_scheduler, stepsize must "
"be an integer, but got {}".format(type(stepsize))
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=stepsize, gamma=gamma
)
elif lr_scheduler == "multi_step":
if not isinstance(stepsize, list):
raise TypeError(
"For multi_step lr_scheduler, stepsize must "
"be a list, but got {}".format(type(stepsize))
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=stepsize, gamma=gamma
)
elif lr_scheduler == "warmup_multi_step":
if not isinstance(stepsize, list):
raise TypeError(
"For warmup multi_step lr_scheduler, stepsize must "
"be a list, but got {}".format(type(stepsize))
)
scheduler = WarmupMultiStepLR(
optimizer,
milestones=stepsize,
gamma=gamma,
warmup_factor=warmup_factor,
warmup_iters=warmup_steps,
)
elif lr_scheduler == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, int(max_epoch)
)
elif lr_scheduler == "linear":
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch - n_epochs_init) / float(n_epochs_decay + 1)
return lr_l
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, lr_lambda=lambda_rule
)
return scheduler