train: experiment_name: 'semantic_sam' # Model model: sam_name: 'sem_sam' params: # Fix the a part of parameters in SAM fix_img_en: True fix_prompt_en: True fix_mask_de: False ckpt_path: '/home/sweet/trt-finetune-anything/sam_ckpts/sam_vit_b_16.pth' # class_num: 2 class_num: 3 # [background, lettuce, weed] [0, 1, 2] model_type: 'vit_b' # type should be in [vit_h, vit_b, vit_l, default] # Dataset dataset: name: 'torch_voc_sem' params: root: '/data/jinziqi/DATASETS/' year: '2012' image_set: 'train' transforms: resize: params: size: [1024, 1024] to_tensor: params: ~ target_transforms: resize: params: size: [1024, 1024] # Losses losses: ce: weight: 0.5 params: # ~ means None type, the initial params of loss could be identified here ignore_index: 255 label_one_hot: False # Optimizer opt_params: lr_default: 1e-3 wd_default: 1e-4 momentum: 0.9 lr_list: [ 1e-2, ] group_keys: [ [ 'mask_adapter.decoder_head', ], ] wd_list: [ 0.0, ] opt_name: 'sgd' # 'sgd' scheduler_name: 'cosine' # Runner max_iter: 100000 log_iter: 20 eval_iter: 100 runner_name: 'sem_runner' # Dataloader bs: 2 # 8 num_workers: 2 drop_last: True # Logger use_tensorboard: True tensorboard_folder: './experiment/tensorboard' log_folder: './experiment/log' model_folder: './experiment/model' val: # Dataset dataset: name: 'torch_voc_sem' params: root: '/data/jinziqi/DATASETS/' year: '2012' image_set: 'train' transforms: resize: params: size: [1024, 1024] to_tensor: params: ~ target_transforms: resize: params: size: [1024, 1024] bs: 2 num_workers: 2 drop_last: True test: need_test: False